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ABSTRACT 

 

Current military-grade rifle body armor technology uses hard ballistic plates 

positioned on top of flexible materials, such as woven Kevlar® to stop projectiles and 

absorb the energy of the impact. However, absorbing the impact energy and stopping a 

rifle projectile comes at a cost to the wearer – mobility. In this thesis, a new concept for 

personal body armor is proposed – a semi-flexible hybrid body armor. This hybrid armor 

is comprised of two components that work as a system to effectively balance the 

flexibility offered by a soft fabric based armor with the protection level of hard plated 

armor. This work demonstrates techniques used to analyze and design the hybrid armor to 

be compliant with National Institute of Justice guidelines. In doing so, finite element 

analysis is used to simulate the effect of a projectile impacting the armor at various 

locations, angles, and velocities, while design of experiments is used to study the effect 

of these various impact combinations on the ability of the armor component(s) (including 

the wearer) to absorb energy. 

The flexibility and protection offered by the two component armor system is 

achieved by the use of proven technique and innovative geometry. For the analytical 

design, the material properties, contact area(s), dwell duration, and energy absorption are 

all carefully considered. This yields a lightweight but yet effective armor, which is 

estimated to weigh 36% less than the current military grade hard body armor.   
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 xviii 

Using ANSYS, several simulations were conducted using finite element analysis, 

including a direct center impact, along with various other impacts to investigate possible 

weak points in the armor. In doing so, it is determined that only one of these impact 

locations is indeed a potential weak point. The finite element analysis continues to show 

that a rifle projectile impacting at an oblique angle reduces the energy transferred to the 

wearer by about 25% (compared to a direct impact). 

A design of experiments approach was used to determine the influence of various 

input parameters, such as projectile impact velocity and impact location. It is shown that 

the projectile impact velocity contributes 36% to the ability of the wearer to absorb 

energy, whereas impact velocity contributes only 13% to the energy absorbed by the top 

armor component. Furthermore, the analysis shows that the impact location is a highly 

influential factor (with a 69% contribution) in the energy absorption by the top armor 

component.  
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CHAPTER 1  PERSONAL BODY ARMOR TECHNOLOGY OVERVIEW 

1.1 Purpose of Body Armor 

The need to protect one’s body in armed combat is as old as combat itself. In a 

side-by-side technology race, the evolution of weaponry brings the development of armor 

systems to protect oneself from the intended purpose of these weapons. The objective of 

body armor is to provide an individual with a resistance from a specified threat while 

maximizing the wearer’s dexterity and minimizing the armor bulk. All body armor 

systems share at least one inherent trait, a balance of user mobility and ballistic protection 

(David, Gao and Zheng 2009). Traditionally, as the armor system increases in weight and 

bulk, the wearer loses stamina and the ability to move rapidly to counter the movements 

of their advisary. This trend is evident in modern warfare where on the battlefields of Iraq 

and Afghanistan, United States and Coalition fighters regularly wear hard armor 

weighing at least 25 lbs. In contrast, their opposition does not typically wear body armor 

and may only be carrying extra ammunition (Lopez 2009). Although well-protected, the 

United States and Coalition fighters are not able to move rapidly to pursue or counter the 

enemy fighters (Lardner 2009).  

Beyond simply stopping a specified threat, a properly designed body armor 

system must also account for the body location that the armor will be worn for protection. 

Statistical research completed by independent organizations shows that particular body 

locations are more likely than others to be impacted by penetrating missiles in ground 
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combat (Grau and Jorgensen 1998). By investigating previous engagements, this research 

shows that the torso received 47.6% of all fatal missile impacts, followed by the limbs 

which received 22.8% of all fatal missile impacts (Brady 2003). Although the need to 

protect these vulnerable areas is high, the torso and limbs have both proven to be very 

difficult to protect in past conflicts. This is mainly because of the previously mentioned 

balance of mobility and ballistic protection (Lopez 2009). To protect the torso and limbs, 

body armor designers and inventers must balance and focus on flexibility, low weight, 

and ballistic protection against shrapnel and moderate caliber rifle missiles. This fine 

balance of ballistic protection and mobility has continually challenged body armor 

designers to devise clever technology to defeat battlefield threats while maintaining low 

weight and high mission effectiveness by the wearer (Lardner 2009).     

1.2 Body Armor Technologies  

The development of practical body armor to protect against penetrating missiles 

has reached several key stages since the mid-1800s. Materials such as silk, cotton, 

metallic, plastic, synthetic fiber and ceramic have all been used to some extent in ballistic 

body armor to successfully protect against a specified missile threat ((Discovery Media 

2011), (Ministry of Foreign Affairs n.d.), (Nicky 2004 ), (Bashford 1920), (Olive-Drab 

LLC 2008)).  

In the mid to late-1800s and early 1900s, the first wearable flexible soft ballistic 

vests to protect against ―slow‖ moving black powder and/or small caliber lead missiles 

were designed. Two designs are recorded; the first design was invented in Korea that uses 

multiple layers (upwards of thirty layers) of woven cotton, and the second design, from 

Poland uses several layers of woven silk to protect against the pistol missiles of the time 
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((Discovery Media 2011), (Ministry of Foreign Affairs n.d.)). Although both of these 

designs are considered by historians to offer the wearer flexibility, they are theoretically 

only capably of stopping soft and slow black powder missiles, offering limited protection 

against high speed rifle projectiles. 

Approximately during the same time period in Australia, bushranger gang 

members led by Ned Kelly used an arrangement of iron plates forged from plow (plough) 

blades to protect against multiple types of law enforcement firearm projectiles. This 

armor system, known as ―Kelly Armour‖ is estimated to weigh nearly 96 lbs, and 

although effective at stopping projectiles, the system was impractical due to the great lack 

of mobility of the wearer (Nicky 2004 ).  

The United States of America and other European counties did not actively pursue 

body armor technology (for firearm projectiles) until 1917, in response to casualties 

caused by automatic (machine) guns being actively utilized on the European battlefields 

of World War I. The United States of America developed the ―Brewster Body Shield‖ 

which weights approximately 40 lbs, was modeled from high strength steel and covered 

much of the upper body (Bashford 1920). Although the wearer was fairly well protected 

against rifle and machine gun threats, only limited quantities of this armor were fielded 

due to the heavy weight and the inability of the user to aim a rifle while wearing the 

system (Bashford 1920).     

During the Second World War, both the United States of America and the Soviet 

Union designed and fielded several body armor systems. The United States system was 

designated the M-12 vest (also known as the ―flak‖ vest) and was worn mainly by 

aircrew members of bomber aircraft to protect the vital organs against explosive 
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fragments (Olive-Drab LLC 2008). The Soviet design (SN-42) was worn by ground 

infantry units in urban combat to protect against the German 9 mm Luger (presently 

renamed the 9×19 mm NATO) projectile at a range of 100 meters and beyond (wikipedia 

2010). The flak vest was made from multiple layers of woven ballistic nylon fibers and 

contained aluminum plates and weighed 12 lbs, while the SN-42 system employed two 

layers pressed steel sheets and weighed about 7.7 lbs.  

The Soviet SN-42 armor is not known to be further developed following World 

War II, however American scientists and engineers continued to develop the flak vest for 

the Korean and Vietnam conflicts. The new vests, designated the M-1951 (Korean) 

(Encyclopaedia Britannica 2010) (Olive-Drab LLC 2008), and M69 (Vietnam) 

(Encyclopaedia Britannica 2010), (vietnamgear.com n.d.), implemented reinforcements 

by first using laminated fiber glass (M-1951) (Encyclopaedia Britannica 2010) and then 

boron-carbide ceramic plates (M69) (Hannon and Abbott 1968) with additional layers of 

the originally designed woven ballistic nylon. Because of the use of laminates, then with 

the use ceramics the weight of the vest decreased from 12 lbs (as worn in World War 

Two) to approximately 8.5 lbs (as worn in Vietnam) (Encyclopaedia Britannica 2010). 

Both the M-1951 and M69 improved flak vests did not offer much, if any ballistic 

protection against the common rifle projectiles of the generation. But both did protect the 

wearer from explosive fragmentation and small caliber pistol projectiles, at a cost of 

mobility and heat generation to the wearer. Statistics show that the percentage of fatal 

penetrating explosive fragments to the chest and stomach (including the pelvis) decreased 

with the use of flak jackets over time by 5.3% and 3.2%, respectively (Grau and 

Jorgensen 1998). 
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Toward the end of the Vietnam conflict, and with the intent of designing 

lightweight automobile tires, the chemical company DuPont
TM

 developed the aramid 

(name brand Kevlar®) fiber (DuPont 2010) . This high molecular weight fiber was found 

to possess high strength, high ballistic resilience and a relatively low weight – a natural 

fit for body armor. Kevlar® can be woven in a similar fashion to many other textiles to 

form sheets, which in turn are layered to form a ballistic armor system, such as a vest. 

One of the first Kevlar®-based armor vests was designed in 1972 by Second Chance 

Body Armor (Second Chance Body Armor 2010), which was a semi-flexible soft armor 

vest. This armor system offered protection against some pistol projectiles and explosive 

fragments, providing an alternative to the ageing flak vest, but was not fully accepted by 

the United States Armed Forces.  Second chance Body Armor is still producing Kevlar® 

vests, mainly for law enforcement officials and is credited with saving nearly a thousand 

lives (Second Chance Body Armor 2010).    

In response to the threats of the cold war, and fueled by the invention of Kevlar® 

(and possibly the success of the Second Chance Body Armor vest), the United States 

redesigned the body armor system to be worn by the U.S. Armed Forces. In the early 

1980s, the U.S. Army fielded the next generation of body armor, named the Personnel 

Armor System for Ground Troops, or PASGT (Olive-Drab LLC 2008). The ballistic 

protection of this armor is offered by using sixteen layers of semi-flexible woven 

Kevlar®, weighs approximately 9 lbs, and offered protection against some pistol and 

fragmentation projectiles, to a higher degree then the flak vest. The entire PASGT system 

(Kevlar® vest and helmet) was worn by the U.S. armed forces in Operation Desert Storm 

in 1990-1991, where statistics show that the percentage of penetrating missiles to the 
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chest was merely 5.8%, a much lower statistic then anyone would have predicted (Grau 

and Jorgensen 1998). These same statistics also show that the percentage of penetrating 

missiles to the unprotected abdomen was 9.3%, which is similar to previous conflicts, 

thus validating the use of Kevlar® based body armor. The PASGT was worn unchanged 

by troops until 1996, at which point the Interim Small Arms Protective Overvest (ISAPO) 

was added to offer the wearer protection against high speed pistol and rifle projectiles 

(Olive-Drab LLC 2008). The ISAPO system was worn over the PASGT vest and held 

two ballistic ceramic plates, one plate mainly located over the wearer’s heart and lungs, 

while the other located over the wearer’s back. Together, the ISAPO and PASGT system 

weighted approximately 25 lbs and was criticized as being bulky, heavy and restricting 

(Olive-Drab LLC 2008). 

During the war on terrorism in 2003, the United States military redesigned the 

personal body armor system, this time from the ground up (Hodge 2006). The new armor 

system, named the Interceptor Body Armor (IBA) utilizes a Kevlar® vest similar to the 

PASGT vest, only adjusted to be more ergonomic, and contains several integrated 

ballistic plate holding pockets (front and rear), thus eliminating the overvest (ISAPO) 

worn previously. The Interceptor Body Armor is a modular system comprised of a basic 

Kevlar® vest and additional ballistic plates that can be worn to protect the torso, crest, 

stomach, arms, neck and groan from rifle projectiles. The basic vest weighs 

approximately 8.3 lbs and the entire system (wearing all ballistic plates) weighs about 34 

lbs (Lopez 2009) (Lardner 2009), but offers better rifle protective coverage area and a 

higher multiple hit capacity compared to the PASGT. Although considered to be bulky, 

heavy, and unnatural by many who have worn the system, the U.S. Military is currently 
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using the IBA for all combat and frontline troops (Lopez 2009) (Lardner 2009), (Olive-

Drab LLC 2008).       

Figure 1 depicts a scaled (by year) timeline of the date of use or invention of the 

various body armor systems discussed. Notice that major conflicts are bracketed by year 

to provide a reference for the reader. By no means does the timeline presented in Figure 1 

represent all the body armor technologies developed during the shown years, it merely 

highlights the commonly used technologies by the U.S. military, law enforcement 

departments and foreign militaries.   

 

Figure 1 Timeline showing several body armor technologies. 

As shown in the timeline most body armor advances and changes take place 

during major conflicts. This trait follows the cliché ―necessity is the mother of 

invention‖.  
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CHAPTER 2  THREAT LEVELS AND TESTING STANDARDS 

2.1 Threat Levels 

To properly design a body armor system, a designer must first consider the 

following things: 

1) the threat level to protect the wearer against, and  

2) the environment that the armor will be worn.  

To quantify the threat level to protect against, the kinetic energy (Greenwood 1988), kE  

(J), of a projectile can be calculated by relating both the translational velocity (m/s) and 

mass (kg) as in Equation 1. 

2

2

1
mVEk 

 

Equation 1 Kinetic energy of a projectile given mass and velocity. 

where V  is the projectile velocity, and m  projectile mass.  

Equation 1 is only valid if the projectile remains a single mass and only 

translational velocity is considered. Table 1 shows several common modern projectiles 

with the corresponding projectile muzzle velocity, mass and calculated kinetic energy 

(U.S. Department of Justice 2008) (Fickler, Ballistic Injury 1986) (Fickler, Wounding 

Patterns of Military Rifle Bullets 1989). 
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Table 1 Common modern projectiles with muzzle ballistics data. 

Projectile Type 
Velocity 

(m/s) 

Mass 

(gm) 

Energy 

(J) 

0.22 LR (long rifle) Pistol/Rifle 342 2.70 160.0 

9×19 mm NATO Pistol 373 8.00 556.5 

0.357 Magnum Pistol 408 10.2 849.0 

0.44 Magnum Pistol 436 15.6 1482 

5.56×45 mm NATO Rifle 943 3.60 1601 

5.65×45 mm (AP) NATO Armor Piercing 925 4.00 1711 

7.62×39 mm Soviet Rifle 713 7.89 2006 

7.62×51 mm NATO Rifle 862 9.70 3604 

0.30 caliber M2 AP Armor Piercing 887 10.8 4249 

 

A body armor system for a police officer to be worn while on patrol is normally 

designed to defeat threats from a 0.357 magnum and below (Second Chance Body Armor 

2010) (Pinnacle Armor 2010) whereas a frontline infantry soldier would wear armor to 

protect against the 7.62×39 mm Soviet projectile (Olive-Drab LLC 2008).       

2.2 Design and Testing Standards 

Once the designer determines the type of threat that the body armor will be 

designed to defeat, the type of armor can be systematically classified. In the United 

States, the National Institute of Justice (NIJ) has created a commonly used system of 

ratings varying in levels from I to IV (with some intermediate level designated with an 

―a‖) to categorize body armor vests (U.S. Department of Justice 2008). These body armor 

types are shown in Table 2.  

 

 

 



www.manaraa.com

 10 

 

Table 2 NIJ body armor levels shown with defeated threat. 

Level Protection Against Remarks 

I 0.22 LR and similar missiles Obsolete armor level 

IIA 9x19mm NATO and similar 

missiles 

Concealable soft armor 

II 0.357 Magnum and similar missiles Worn by many police officers 

IIIA 0.44 Magnum and similar missiles Bulky semi-hard armor 

III Military Rifles This armor uses ceramic plates 

IV Armor Piercing Rifle Very bulky and hard armor 

 

Typically, the armor vests categorized as NIJ level I, IIA, and II are referred to as 

―soft‖ body armor, whereas, levels IIIA, III and IV are commonly referred to as ―hard‖ 

body armor (U.S. Department of Justice 2008). This is because soft body armor 

characteristically uses layers of woven textile materials, such as ballistic nylon or 

Kevlar® 29 fibers, to protect against projectiles and thus when worn remains flexible or 

semi-flexible (David, Gao and Zheng 2009). Alternatively, hard body armor normally 

uses a combination of woven fibers with ceramic and/or metallic ballistic plates, such as 

boron-carbide to protect against many pistol and more critically, rifle projectiles (David, 

Gao and Zheng 2009). An example of a currently used hard body armor system is the 

interceptor body armor (IBA) worn by soldiers and marines of the U.S. military.  

The balance of protection and mobility is demonstrated and considered in both 

soft and hard body armor. The mobility inherent of soft body armor comes at the cost of 

ballistic protection, whereas to achieve a higher degree of protection, the wearer of hard 

body armor must sacrifice mobility.  

In addition to classifying body armor, the National Institute of Justice has also 

established and outlined a detailed and methodical armor testing rubric (U.S. Department 

of Justice 2008). Factors contributing to the scoring of a body armor system during the 
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testing are (but not limited too), the bullet line of flight, angle of incidence, backface 

signature (BFS), backing material fixture, bullet type, bullet velocity, shot-to-edge 

distance, and environmental conditions (moisture, humidity, temperature, etc). Figure 2 

depicts a typical body armor system testing setup.  

 

Figure 2 Side view of testing setup as per NIJ standards (not drawn to scale).  

Figure 2 shows a hard body armor sample, identified by the use of both the 

ballistic plate and textile placed on the specified backing material as per NIJ standards. 

Following the NIJ guidelines, the backing material is specified to be a homogenous block 

of nonhardening oil-based modeling clay which must be placed in contact with the back 

face of the armor panel during all testing (U.S. Department of Justice 2008). The backing 

material fixture is specified to be a box-like rigid frame made from plywood (or metal) 

with a removable back which restrains the backing (clay) material (U.S. Department of 

Justice 2008).  
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The complete scoring of a body armor system in accordance with NIJ standards is 

complex and requires many different controlled laboratory tests. However, two main 

factors are indicant that a body armor system has failed with certainty, and these are: 

 1) an excessive BFS and/or 

 2) a perforation of the body armor system.  

This is one of the first tests conducted by NIJ officials on a potential body armor system 

and the test is named the Perforation-Backface Signature (P-BFS) test (U.S. Department 

of Justice 2008).  As per NIJ standards (U.S. Department of Justice 2008) ―A perforation 

is any impact which creates a hole passing through the armor,‖ and the backface 

signature (BFS) is defined as the greatest extent of indentation in the backing material 

caused by a nonperforating impact on the armor . An armor system is considered to have 

stopped a projectile if the outcome of the P-BFS test is that the projectile is either 

captured or deflected by the armor, with no portion of the projectile or fragments of the 

armor perforating the armor, and resulting in a BFS less than 44 mm (U.S. Department of 

Justice 2008).  

To complete the P-BFS test, NIJ officials conduct several tests on identical armor 

samples using common projectiles (listed in Table 1). Each armor sample is impacted at a 

specified velocity at zero, and then 30° and/or 45° angle of incidence. This procedure is 

repeated for all armor levels (starting at type IIA) with a new armor sample until the 

armor sample has failed the P-BFS test.  

Table 3 shows the NIJ testing requirements for the P-BFS test (U.S. Department 

of Justice 2008). 
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Table 3 NIJ testing hit requirements for the P-BFS test.  

Armor 

Type 

Bullet type Test 

velocity 

(m/s) 

Bullet 

mass 

(gm) 

Kinetic 

energy 

(J) 

Hits at 

0° 

angle 

Hits at 

30° or 45° 

angle 

Maximum 

BFS (mm)  

I 0.22 LR 342 2.70 160.0 4 2 44 

IIA 9×19 mm 373 8.00 556.5 4 2 44 

II 0.357 Magnum 408 10.2 849.0 4 2 44 

IIIA 0.44 Magnum 436 15.6 1482 4 2 44 

III 7.62 NATO 862 9.70 3604 6 0 44 

IV 0.30 Caliber 887 10.8 4249 1-6 0 44 

     

As one can see from examining the hit requirement table, an armor sample must 

be able to protect against a specific threat hit at any random location or angle of 

incidence. Additionally, one can gather that a multiple-hit capacity is a very important 

consideration for an armor design. 
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CHAPTER 3  FLESH WOUNDING AND BODY ARMOR PENETRATION 

3.1 Bullet Impact Survivability - Protected and Unprotected 

The survivability of an unprotected human struck by a bullet or high speed 

explosive fragment depends on four main wound mechanisms (Fickler, Ballistic Injury 

1986) (Fickler, Wounding Patterns of Military Rifle Bullets 1989). These mechanisms 

are: 

1) projectile penetration – defined as the action of the bullet tearing through 

and/or destroying tissue,  

2) permanent flesh deformation – the permanent cavity created by the passage of 

the bullet where flesh once was,  

3) temporary flesh deformation – which is characterized by the tissue that is 

stretched and/or torn by the shock wave propagation of the impact and the 

travelling projectile, and 

4) fragmentation – which is associated with the pieces of the bullet and/or 

shattered bone that travel outward of the impact cavity that disrupt tissue, 

muscle and/or vessels. 

The first two mechanisms, projectile penetration and permanent flesh 

deformation, are the most influential factors contributing the survivability of a bullet or 

fragmentation strike (Urey 1989). The temporary flesh deformation is primarily 

associated with bruising and blunt trauma (Fickler, Ballistic Injury 1986), and no 
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evidence suggests that this mechanism or fragmentation causes severe damage to elastic 

flesh (Urey 1989). A properly designed body armor system will insure safety to the 

wearer by defeating at least the first two wound mechanisms for all projectile threats, and 

thus will prohibit projectile flesh penetration, reduce energy transfer to the user, and 

minimize the inward flesh deflection. 

3.2 Mechanisms of an Impact Into a Hard Body Armor System 

The mechanisms and dynamics of a projectile impact into a body armor system 

are complex and not fully researched or understood (David, Gao and Zheng 2009), 

(Tabiei and Nilakantan 2008). Intrinsic material properties, damping characteristics, 

geometry, component constants, and layer inactions are only several of the variables that 

effect the ability of an armor system to distribute dynamic stresses, absorb energy, and 

stop a projectile once impacted. Over the past few decades, hard body armor has been 

studied to determine the basic mechanisms and sequence of events that occur during the 

moments of impact (David, Gao and Zheng 2009). Figure 3 shows a typical hard body 

armor system comprised of flexible woven layers of Kevlar® topped with a hard ballistic 

plate (facing toward the point of impact). 

 

Figure 3 An example layout of a common hard armor system (side view shown). 

The purpose of the ballistic plate is to degrade the projectile tip and spread the 

dynamic loads over a larger area to the underlying layers. Chocron-Galvez (Chocron and 

Galvez 1998) showed that during the first few moments (around 4 μs) of the projectile-
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plate impact, the velocity of the plate is zero; because of the high compressive strength of 

the plate. During these moments, the tip begins to degrade and plastically deform by 

being compressed against ballistic plate, all-the-while a compressive shock wave travels 

at the speed of sound radially outward from the impact zone (Shokrich and Javadpour 

2008). Chocron-Galvez (1998) continued to show that the rear of the projectile does not 

stop moving, and in addition, once the propagating shock wave reaches the outer edges of 

the ballistic plate, it reflects (mainly because of the larger mechanical impedance) and 

becomes a tensile shock wave which can fracture the ballistic plate ( (Shokrich and 

Javadpour 2008),(David, Gao and Zheng 2009)). The fractured zone of the ballistic plate 

is known as the damage cone (or conoid) and is shown in Figure 4 (David, Gao and 

Zheng 2009), (Fellows and Barton 1999). The moments of impact when plate is not 

moving or deflecting in any way, and the projectile tip is being eroded is known as the 

dwell duration and is a very important design parameter for a ballistic plate (David, Gao 

and Zheng 2009).   

 

Figure 4 Impacted ballistic plate, shown at the moment of damage cone formation. 

Upon the forming of the damage cone, the deformed projectile begins to perforate 

the ballistic plate. As perforation continues, the damage cone and plate fragments 

continue to reduce the projectile velocity and further degrade the projectile tip, while the 
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lower portion of the damage cone distributes the dynamic forces unto the underlying 

material(s) (David, Gao and Zheng 2009), as shown in Figure 5 (Tabiei and Nilakantan 

2008). The underlying material(s) theoretically absorb much of the remaining kinetic 

energy and further distribute the dynamic forces on an enlarged area to the wearer, unless 

of course the armor is completely perforated.    

 

Figure 5 Shown is the damage cone post dwell duration. The figure to the right shows a later impact 

time of impact from the figure to the left. 

In a case of the underlying material being comprised of a metal, energy is mainly 

absorbed via elastic and then plastic deformation or by fracturing, whereas when the 

underlying material(s) is/are a woven textile (or unidirectional composite), energy is 

mainly absorbed by frictional fiber interactions and fiber deformation (David, Gao and 

Zheng 2009), (Tabiei and Nilakantan 2008), (Gellert, Pattie and Woodard 1998). As in 

case of the ballistic plate, similar compressive shock waves propagate at the speed of 

sound radially outward and reflect off the underlying material edges, thus creating a 

tensile shock wave. However, the phenomenon of the dwell duration typically does not 

seem to exist for metals or textiles. Energy and stress is transferred transversely from one 

corresponding layer to the next and is governed by corresponding layer frictional and 

material constraints and geometric properties (Tabiei and Nilakantan 2008). These 

interactions continue to occur until projectile is either stopped and the system has reached 

equilibrium, or has completely perforated the armor system.      
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3.3 Bullet Design and the Effect on Penetration 

Whether for good or bad, a bullet projectile is designed to penetrate and destroy a 

target. Four main parameters control the ability for a projectile to effectively penetrate a 

target (Fickler, Ballistic Injury 1986), and these are the 

1) projectile mass, 

2) projectile shape, 

3) projectile construction, and 

4) striking velocity.  

When comparing a handgun to a rifle projectile, the handgun projectile is more massive 

with a nearly round nose, whereas a rifle projectile has a pointed nose and strikes at a 

much higher velocity (Figure 6).  

 

Figure 6 Comparison of a 9×19 mm NATO (left) to a 5.56×45 mm NATO (right) cartridge. 

Because of the higher striking velocity and pointed nose shape, a rifle projectile is 

generally better suited over a pistol projectile for target penetration (Fickler, Ballistic 

Injury 1986). The reverse is true for a pistol projectile where the nose is round, nominal 

bullet diameter is large, core is comprised of highly a ductile lead-alloy, and striking 

velocity is low. A pistol projectile is simply a poor choice for penetration (Brady 2003). 

Of the common rifle projectiles, the 5.56×45 mm (AP) NATO projectile is specifically 

designed with a dense steel-lead alloy ―penetrator‖ core to penetrate armor (Fickler, 
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Wounding Patterns of Military Rifle Bullets 1989). This is considered to be the best 

armor piecing bullet among its category, hence the AP designation standing for Armor 

Piercing.   
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CHAPTER 4  IDEAL ARMOR AND ARMOR CONCEPT 

4.1 Current Armor Problems and Shortfalls 

Although hard body armor offers a high level of protection against common 

assault rifle projectiles and high velocity fragments, user mobility and dexterity is 

noticeably and significantly decreased (as compared to soft or no armor) (Lardner 2009). 

In addition to the decrease in mobility, the wearer’s vital organs, such as the liver and 

stomach are not fully protected. Particular areas of venerability include the lower torso 

and upper chest, via the underarms. These areas are intentionally left unprotected to rifle 

fire to allow for a greater range of motion around and about the waist, as placing a hard 

ballistic plate would restrict motion. This is an example of balance of mobility and 

protection mentioned in Section 1.1 Purpose of Body Armor. Table 4 provides a 

summary of the current body armor problems.  

Table 4 Problems with current hard and soft body armor systems. 

Hard Body Armor (NIJ level IIIA/III) Problems 

1 Armor is heavy and bulky. 

2 User mobility and dexterity is decreased as compared to wearing no armor. 

3 NIJ level III protective coverage area is small, lower torso and under arms are 

exposed. 

Soft Body Armor (NIJ level II/IIA) Problems 

1 No protection against a rifle and/or high powered pistol projectiles. 
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A mix of the great protective qualities of hard body armor with the high levels of 

protective area and mobility of soft armor would solve many of the problems listed in 

Table 4.  

4.2 Ideal Armor 

Given the current state of technology, a body armor system should be able to 

provide the wearer with protection against high speed rifle projectiles while minimally 

decreasing mobility. As shown in Table 2, a system capable of accomplishing this feat 

would be at least an NIJ level IIIA or III armor. The historically hard NIJ level IIIA/III 

armor systems would require a redesign of the ballistic plates to increase mobility and 

decrease armor weight, as this is the limiting factor to the wearer’s mobility. Redesigning 

the classic ballistic plates to take advantage of modern technology will require that the 

plate geometry and material(s) be reconsidered, and this can be a challenging and time-

consuming task. 

This work aims to address the problems listed in Table 4, particularly by focusing 

on redesigning the common NIJ IIIA/III armor to take full advantage of current 

technology. To aid this effort, a set of objectives to directly address the current body 

armor problems (Table 4) was created, and is listed in  

Table 5. An armor system that can fulfill these objectives using current 

technology is considered the ideal armor of today.  

Table 5 Design objectives of the ideal armor system. 

1 Increase the wearer’s mobility and dexterity while maintaining at least NIJ 

level IIIA/III protection (as compared to traditional hard body armor). 

2 Increase the NIJ level IIIA/III protection coverage area to include the lower 

torso and underarms. 

3 Decrease the areal armor density (as compared other hard armor). 
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4.3 Preliminary Armor Design  

To ease the daunting task of addressing the objectives listed in Table 5, the 

project was broken into four steps. A flowchart was used to create the ultimate design 

objectives, provide a map to solving the problem(s), and provide insight to the analysis 

procedure; this is shown in Figure 7. As one can see, the first step is to define the 

problem and list the design objectives. Other steps of the problem solving process include 

the background investigation, design and analysis strategy, and analysis tests outcomes to 

determine a design failure or success. 
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Figure 7 Flowchart used to step through the design and analysis process. 
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As shown in Figure 7, once the design objectives are set, Step 1 continues by 

investigating the strengths and weaknesses of current, obsolete, and ancient personal 

armor systems. These strengths and weaknesses traits are categorized (for example, 

flexibility, protection level, and weight) and compared and contrasted in Table 6 to 

identify any patterns and to determine what works or has worked previously relative to 

the design objectives. The examined armor systems include, the soft and hard armor body 

armor currently used (described in detail in Section 1.2 Body Armor Technologies), a 

proposed carbon nanotube armor (Li, et al. 2008), (David, Gao and Zheng 2009), the 

―coat of plates‖ armor worn in Russia in the 13
th

 century (Yurasovskiy n.d.), and finally a 

stab-resistant personal armor researched and developed in Queen’s University, Ontario, 

Canada (Croitoro and Boros 2007).    

Table 6 Armor system trait comparison table. 

Trait (0-10) 

Soft Armor 

(Kevlar® 

vest) 

Hard Armor 

(complete 

IBA) 

Theoretical  

Nanotube 

armor 

 Russian 

―coat of 

plates‖ 

Stab 

resistant 

armor 

Protection 3 8 9 -- 1 

Coverage area 9 6 -- 8 -- 

Weight 7 3 9 -- 7 

Flexibility 7 3 -- 7 8 

Manufacturability 8 4 0 -- 8 

Bulk 8 2 -- -- 9 

 

The protection trait listed in Table 6 refers to ability for the armor system to 

protect against a currently produced single assault rifle projectile. With the exception of 

soft and hard armor, the protection trait is an assumed number ((David, Gao and Zheng 

2009), (Yurasovskiy n.d.), (Croitoro and Boros 2007)). The manufacturability and bulk 

traits listed correspond to the ability to mass produce the armor system and the overall 

armor thickness, respectively, and are assumed for all systems (based upon available 
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literature). The ideal personal armor system would receive a score of 10 for all categories. 

Note that some information is missing, not available, or unknown, such as the bulk of a 

nanotube based armor, the weight of the Russian ―coat of plates‖ and the coverage area of 

the stab resistant armor. 

4.4 Design Plan and Concept Proposal 

Upon careful and complete examination of Table 6, the focus of the project is 

shifted to Step 2 of the problem solving process, that is to devise a plan. As shown, no 

armor system is capable of NIJ level III protection while preserving flexibility and low 

weight. However, a hybrid of existing and proven technologies may be able to favorably 

balance both protection and flexibility.  The ―coat of plates‖, and in particular the stab 

resistant armor array both utilize relatively small armor plates placed upon a flexible 

substrate, such as leather (shown in Figure 8), and both have previously been tested and 

proven to be wearable and less-restrictive for motion ((Croitoro and Boros 2007), 

(Yurasovskiy n.d.)). Similarly, soft Kevlar® armor vests have been worn for decades, 

providing NIJ level II protection, low bulk and weight, and medium to high flexibility 

(Second Chance Body Armor 2010). In contrast, the IBA has a fantastic ability to protect 

against rifle projectiles, however, is heavy, uncomfortable and bulky (Lopez 2009).    

 



www.manaraa.com

 26 

  

Figure 8 Example layout of flexible plated armor showing armor plates adhered to a flexible 

substrate (top view shown). 

Focusing on the positive traits of the various armor systems, a new armor is 

proposed. The new armor, a hybrid semi-flexible armor answers the objectives listed in 

Table 5 by using a matrix of specially designed small ballistic plates placed on top of a 

substrate of flexible woven Kelvar® layers. Furthermore, each plate will be reinforced 

with at least one Kevlar® sheet. This sheet is to contain any ceramic fragments and to 

increase the multiple hit capacity. The small ballistic plates will be secured in place via 

elastic bands in an over-under cross fashion. The layout of the ballistic plates, shown in 

Figure 9 is geometrically similar to stab resistant armor mentioned in Table 6, proving 

that the system will be flexible (providing that the substrate is flexible). However, to 

avoid the inevitable gaps caused by using rectangular plates, the proposed armor plates 

will be skewed in two directions to provide a vital gap overlap (Figure 10). 
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Figure 9 Rigid ballistic plate layout of hybrid semi-flexible armor. 

 

Figure 10 Cross-sectional sketch of two skewed biplates used for proposed armor. 

The armor carrier as shown in Figure 11 and Figure 12 is made of cotton (or a 

similar textile) and contains two compartments.  

 

Figure 11 Orthogonal view of the hybrid armor carrier, shown without armor components. 
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Figure 12 Orthogonal view of the hybrid armor carrier, shown with armor components. 

The armor carrier will be worn on the person in a similar fashion to current armor 

vests, differing in that it will extend higher in the under arms and lower in the torso and 

groin area. This is made possible by the added flexibility, and therefore the rifle 

protective area will be increased (as compared to similar NIJ level III armor). Because of 

the elastic bands holding the ballistic plates in place, the plates can be added or removed 

to adjust the armor weight, tailor the protective level and comfort desired. The substrate 

layers may also be easily and freely removed from the lower compartment of the carrier 

to allow for potential upgrades and maintenance to the woven layers. Additionally, these 

underlying woven layers will be contained as a single unit inside of a plastic case. This 

case is to keep the fibers protected and isolated from any chemical, water, and/or ultra-

violet light exposure. 

The hybrid armor is intended to be worn by frontline combat personnel, 

specialized police forces and other law enforcement agencies requiring rifle projectile 

protection. Table 7 provides a summary of current body armor problems and the solution 

offered by the purposed semi-flexible hybrid body armor. 
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Table 7 Current armor problems listed with semi-flexible hybrid armor solution. 

Problem Proposed Solution 

NIJ IIIA/III level 

armor is heavy 

Optimization for current armor technologies equates to a 

lower overall areal density  

Wearer lacks 

mobility/dexterity 

Small double-skewed rigid ballistic plates will be placed 

overtop a flexible Kevlar® substrate 

Limited rifle 

protection coverage 

skewed ballistic plates provide mobility, additional plates 

are removable to allow for customization 
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CHAPTER 5  DESIGN PLAN 

5.1 Design Subgoals 

The actual design of the hybrid armor system is the next step in the flowchart 

shown in Figure 7, beginning with setting design subgoals for the finished system. 

Among the objectives listed in Table 5, the hybrid armor system will also have positive 

buoyancy and be less than 20 mm in overall thickness (0.787 inch, at the thickest point). 

Table 8 summarizes the preliminarily set goals and subgoals for hybrid armor system. 

Table 8 Design goals and subgoals of the hybrid armor system. 

Primary Goal 

1 Increase the wearer’s mobility and dexterity while maintaining NIJ level III 

assault rifle protection (as compared to traditional hard body armor). 

2 Increase the NIJ level III protection coverage area to include the lower torso 

and underarms. 

3 Decrease the areal armor density (as compared other hard armor). 

Subgoal 

1 Possesses positive buoyancy. 

2 Maximum thickness to be no greater than 20 mm. 

 

The areal density, pA (kg/m
2
) for an armor system consisting of n  layers is 

determined by considering the mass density and thickness of each layer and is related in 

Equation 2 (David, Gao and Zheng 2009). 
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n

i

iip tA
1


 

Equation 2 Areal density of an armor system. 

where it  the individual layer thickness (m) and i  
the individual mass density (kg/m

3
). 

Table 9 shows a few areal density values common armor technologies (David, 

Gao and Zheng 2009). 

Table 9 Areal density of common armor systems. 

Armor type 
Areal density 

(kg/m
2
) 

Classification 

Laminated Composite Armor 67 Rigid - hard 

Woven Kevlar® 29   12 Flexible - soft 

Ceramic-Metallic Plate armor 67 Rigid - hard 

Sand and E-Glass Armor 16.5 Flexible - soft 

Carbon Nanotubes Unknown Unknown 

 

As shown in Table 9, a typical trend is that a textile based flexible armor has a 

significantly lower areal density as compared to a rigid plated armor system, such as the 

laminated composite armor.    

5.2 Projectile Parameters 

One of the factors beyond the control of the designer is the projectile that impacts 

the armor. In an ideal case, the armor system will be able to protect the wearer against all 

projectiles of many different shapes, masses, and impact velocities, regardless of the 

source (explosive fragment, pistol, rifle, etc). Since the impacting projectile type is 

unknown, good design practice dictates that the armor should be designed to protect 

against an impact from the best armor piercing projectile in the desired NIJ category.   

As mentioned in Section 3.3 Bullet Design and the Effect on Penetration, a 

projectile with a high striking velocity and pointed tip is best suited for penetration. The 
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projectile mass and construction do not contribute as highly to penetration as the velocity 

and tip design do. To be classified as an NIJ level III armor, the system must protect the 

wearer against rifle projectiles such as the 5.56×45 mm NATO and 7.62 mm Soviet (7.62 

Soviet), both common battlefield cartridges chambered for the M-16 and AK-47, 

respectively (Fickler, Wounding Patterns of Military Rifle Bullets 1989).   

The geometry of hybrid armor system will be designed to protect against the high 

velocity of the 5.56×45 mm NATO (5.56 NATO) and the striking tip of both the 5.56 

NATO and 7.62 Soviet. Additional design consideration will be given to the construction 

of the 5.56 NATO, as this projectile is specifically designed with a dense core to 

penetrate armor.  

In an effort to keep the analysis as free of variables as possible, the hybrid armor 

system analysis will only consider the 5.56 NATO projectile, the best armor piercing 

projectile in the NIJ level III category. The impact velocity of this projectile will be 

adjusted to match the kinetic energy of the lesser NIJ level projectiles, such as the 9×19 

mm NATO and 0.44 Magnum. This method will be covered in more depth in Chapter 7. 

Figure 13 shows the dimensions of the 5.56 NATO used for the design and analysis.  

 

Figure 13 Projectile and dimensions used in design.  
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Note that in Figure 13, the diameter of the 5.56×45 mm NATO projectile is 5.70 

mm and the length is 12.70 mm. This may seem counter-intuitive given the projectile 

name. The projectile contains a highly-dense lead alloy core surrounded by a copper alloy 

jacket, about 0.50 mm thick.  

5.3 Armor Component Design 

With the threat level and projectile type established, the design of the armor 

system itself may commence. The proposed hybrid armor system contains two main 

armor components, the  

1) ballistic plate, and  

2) underlying flexible Kevlar® (substrate).  

The ballistic plate(s) serves to degrade the projectile structure, absorb much of the impact 

energy, and distribute the impact loads over a larger area to the substrate. The underlying 

flexible Kevlar® serves not only as the plate substrate, but also acts as a means of 

catching any fragments and to further distribute the impact loads.  

To obtain both a low areal density and high compressive strength, ceramics are 

considered for the ballistic plate (Hannon and Abbott 1968). This decision brings on a 

new problem; in spite of a high compressive strength, ceramics typically have low 

modulus of resilience and thus cannot absorb much energy before failure (Norton 2006). 

To provide a means of absorbing energy, a two-layer ballistic plate is proposed, where 

the upper layer (orthogonal to and facing the point of impact) is a high hardness-low 

ductility material and the lower layer is a medium-strength-higher ductility material. This 

type of ballistic plate (shown in Figure 14) is commonly used in armor systems and is 

well researched (Teng, Wierzbicki and Huang 2008), (Davila and Chen 2000).  
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Figure 14 Example layout of a two layer ballistic plate. 

While designing the first armor component, the two layer ballistic plate (for this 

work termed as the ―biplate‖), one must consider the dwell duration (described in Section 

3.2 Mechanisms of an Impact Into a Hard Body Armor System), energy absorption 

capability, areal density, impact velocity, and projectile type (rifle, pistol, etc). These 

factors all contribute to the overall thickness dimensions of each layer. Alternatively, the 

second armor component, the underlying Kevlar® layers, requires one to consider the 

textile weave, fiber, binding matrix, constraint type, and layer quantities. These traits are 

all considered in an effort to maximize flexibility and fiber interactions and to evenly 

distribute loading on the textile fibers. There are many textile weave patterns to consider, 

and for this work a plain textile weave will be used, as shown in the schematic in Figure 

15. 

 

Figure 15 Schematic of a plain-woven textile - the textile weave chosen for the underlying fibers. 
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As one can see, the weave chosen has a nearly equal distribution of over-under 

fibers, called the warp and fill (Hahn, et al. 2002). This is further illustrated in Figure 16 

which shows a cross-sectional view of a plain-woven textile layer. 

 

Figure 16 Plain woven textile showing the cross-section of the warp and fill. 

With the basic design concept of the ballistic plate and textile determined, each of 

these components can now be examined and expanded upon in further detail.    

5.4 Biplate Material Selection and Properties 

For this work, the materials used for the biplate are aluminum-oxide (alumina, 

Al2O3) (MatWeb 2010) and aluminum (MatWeb 2010) for the upper and lower layers, 

respectively. Other materials considered for the biplate top layer were boron-carbide 

(B4C) (MatWeb 2010) and silicon-carbide (SiC) (MatWeb 2010), and for the lower layer, 

both shock resistant tool steel (MatWeb 2010) and titanium alloy (MatWeb 2010) were 

considered. Table 10 and Table 11 show the selection criteria used to determine the two 

biplate materials. 

 

 

 

 



www.manaraa.com

 36 

Table 10 Material properties of the considered ceramics of the biplate. 

Trait B4C Al2O3 SiC 

Speed of sound (m/s) 8630.7 7457.6 7906.6 

Tensile strength (MPa) 172 300 340 

Compressive strength (MPa) 1721 3000 3500 

Modulus of resilience (kJ/m
3
) 39.074 121.6 152.1 

Young’s modulus (GPa) 379 370 380 

Poisson’s ratio  0.18 0.22 0.17 

Fracture toughness  (MPa-m
1/2

) 3.50 4.00 4.00 

Mass Density (kg/m
3
) 2650 3960 3070 

 

Table 11 Material properties of the considered metallics of the biplate. 

Trait Aluminum Steel Titanium 

Speed of sound (m/s) 5001.6 4502.5 4873.8 

Ultimate strength (MPa) 572 2080 1030 

Yield strength (MPa) 503 1800 930 

Strain at failure (m/m) 0.110 0.100 0.140 

Modulus of toughness (kJ/m
3
) 59125 194000 137200 

Young’s modulus (GPa) 71.7 200 110 

Poisson’s ratio  0.33 0.290 0.33 

Mass Density (kg/m
3
) 2810 7830 4540 

 

The speed of sound, a  (m/s), of the material is calculated using Equation 3 

(White 2006). 



K
a 

 

Equation 3 Speed of sound in a material. 

where   is the material density (kg/m
3
), and K  is the bulk modulus (Pa) and is found 

using Equation 4 (Ugural and Fenster 2003).  

 v

E
K

213 


   

Equation 4 Bulk modulus of a material. 
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Equation 4 relates the Young’s and Poisson’s moduli of the material, E (Pa) and 

v , respectively, to find the bulk modulus. In Table 10, the modulus of resilience, RU

(J/m
3
) is approximated by using Equation 5 (Norton 2006). 

   E

S
U

y

R

2

2

1


 

Equation 5 Method for approximating the modulus of resilience. 

where yS  is the yield strength (Pa) of the material.  

In Table 11 the modulus of toughness, TU  (J/m
3
) is approximated by using 

Equation 6 (Norton 2006). 

f

uty

T

SS
U 









 


2
 

Equation 6 Method for approximating the modulus of toughness. 

where utS  is the ultimate tensile strength (Pa) of the material, and f  is the strain at 

failure of the material.  

To rank and evaluate each material for use as part of body armor component, a 

decision matrix was developed. For each material, each trait was normalized with respect 

to the largest value in the category and then assigned a multiplication factor. This 

multiplication factor, MF (1, 2, 3, 4, or 5) is given for each trait and is based on the 

importance of that trait. For example, speed of sound is given a multiplication factor 

(MF) of 5 because it is a very important design perimeter. This multiplication factor is 

then multiplied to the normalized value (NV) for each material to obtain a score value 

(SV) for the trait in question. To find the total score, the desired large (designated as ―B‖) 

and low (designed as ―A‖) traits are totaled, where the low value sum is then subtracted 
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from the high value sum. Table 12 and Table 13 show the score values for materials of 

the top and lower layers of the biplate, respectively.    

Table 12 Scoring and ranking each ceramic material for the top layer. 

 B4C Al2O3 SiC 

Trait MF NV SV NV SV NV SV 

A 
Speed of sound 5 1.00 5.00 0.86 4.32 0.92 4.58 

Density 3 0.67 2.01 1.00 3.00 0.78 2.33 

Total: A 8 -- 7.01 -- 7.32 -- 6.91 

B 

Tensile strength 3 0.51 1.52 0.88 2.64 1.00 3.00 

Compressive strength 4 0.49 1.97 0.86 3.42 1.00 4.00 

Modulus of resilience 4 0.26 1.03 0.80 3.20 1.00 4.00 

Young’s modulus 2 0.99 1.99 0.97 1.95 1.00 2.00 

Poisson’s ratio 2 0.82 1.64 1.00 2.00 0.77 1.55 

Fracture toughness 4 0.88 3.50 1.00 4.00 1.00 4.00 

Total: B 19 -- 11.65 -- 17.21 -- 18.55 

Total: B - A 11 -- 4.64 -- 9.89 -- 11.64 

 

Table 13 Scoring and ranking each metallic material for the lower layer. 

 Aluminum Steel Titanium 

Trait MF NV SV NV SV NV SV 

A 
Speed of sound 2 1.00 2.00 0.90 1.80 0.97 1.94 

Density 5 0.36 1.80 1.00 5.00 0.58 2.90 

Total: A 8 -- 3.80 -- 6.80 -- 4.84 

B 

Modulus of toughness 4 0.30 1.20 1.00 4.00 0.71 2.84 

Young’s modulus 2 0.36 0.72 1.00 2.00 0.55 1.10 

Poisson’s ratio 2 1.00 2.00 0.88 1.76 1.00 2.00 

Strain to failure 4 0.79 3.16 0.71 2.84 1.00 4.00 

Total: B 19 -- 7.08 -- 10.6 -- 9.94 

Total: B - A 11 -- 3.28 -- 3.80 -- 5.10 
 

Each material trait from Table 12 and Table 13 is normalized by using Equation 

7. 

)max(

*

T

T
T i

i 

 

Equation 7 Normalization equation. 
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where T  is the respective trait and the subscript i  corresponds to the material in 

question. 

 As one can see from Table 12, silicon carbide shows a favorable score, followed 

closely by aluminum oxide, with values of facture toughness, compression and tensile 

strength being very similar. Ultimately, aluminum oxide was chosen because of the low 

speed of sound as compared to silicon carbide. Upon a high velocity impact, the damage 

cone will inevitably form causing the ceramic material to fracture. Prolonged dwell 

duration is highly desirable and is dependent upon the speed of sound of the material; 

therefore, the raw score alone cannot be used as the deciding factor for material selection.  

 For the lower portion of the plate, aluminum is selected. Titanium alloy shows 

good potential as an armor material (as evaluated in Table 13) and will be examined 

further in future work. Steel and aluminum both ranked closely. Although tough and 

strong, steel is very dense, and hence if implemented, it would require a thin armor 

section to remain lightweight, and thus reducing layer contact areas and in turn 

eliminating its advantages. 

5.5 Woven Textile Fiber Selection and Properties 

The fiber selected for the woven underlying textile material is aramid Kevlar® 29 

by DuPont. This fiber exhibits high axial strength, high transverse flexibility, low weight, 

and most importantly, high impact resilience (DuPont 2010). Other fibers considered 

were the Kevlar® 49 fiber (DuPont 2010) and the common glass fiber (Kaw 2006). Table 

14 shows the properties of the three plausible fibers and Table 15 shows the fibers scored 

and ranked in a similar fashion that is shown Section 5.4. 
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Table 14  Material properties for the considered fibers. 

Trait Kevlar® 29 Kevlar® 49 Glass 

Tensile strength (MPa) 3600 3600 1550 

Strain at failure (m/m) 0.036 0.024 0.018 

Modulus of resilience (kJ/m
3
) 78072 52258 14132 

Young’s modulus (GPa) 83.0 124 85.0 

Poisson’s ratio  0.36 0.36 0.20 

Mass Density (kg/m
3
) 1440 1440 2500 

  

Table 15 Scoring and ranking matrix for each fiber considered. 

 Kevlar® 29 Kevlar® 49 Glass 

Trait MF NV SV NV SV NV SV 

A Mass Density 4 0.57 2.28 0.57 2.28 1.00 4.00 

Total A 4 -- 2.28 -- 2.28 -- 4.00 

B 

Tensile strength 4 1.00 4.00 1.00 4.00 0.43 1.72 

Strain at failure 4 1.00 4.00 0.67 2.68 0.50 2.00 

Modulus of resilience 5 1.00 5.00 0.67 3.35 0.18 0.90 

Young’s modulus 3 0.67 2.01 1.00 3.00 0.69 2.07 

Poisson’s ratio 1 1.00 1.00 1.00 1.00 0.56 0.56 

Total B 17 -- 16.01 -- 14.03 -- 7.25 

Total B-A 13 -- 13.73 -- 11.75 -- 3.25 

 

For Table 15, the modulus of resilience is calculated using Equation 5 shown in 

Section 5.4.  

As shown, Kevlar® 29 significantly outranked the other two fibers. Although the 

Young’s modulus is lower than either other fiber, Kevlar® 29 has the highest modulus of 

resilience, mainly because of the high strain to failure. The glass fiber did not score well 

because the strain to failure, tensile strength and Young’s modulus are all low. This fiber 

also has the highest mass density of all three fibers, a very important design 

consideration.    
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5.6 Predicted Plain-Woven Textile Engineering Properties    

To predict the required engineering constants of the textile, the weave type, 

warp/fill spacing, fiber diameter(s), denier, independent fiber properties, and fiber 

volume fracture, must all be considered. Table 16 shows the directional individual fiber 

and matrix properties used to predict the woven layer properties ((DuPont 2010),(Kaw 

2006), (Hahn, et al. 2002)). 

Table 16 Fiber and matrix properties used for plain weave.     

Property Kevlar® 29 Matrix 

Axial modulus, (GPa) 83.0 3.4 

Transverse modulus, (GPa) 2.50 3.4 

Axial shear modulus, (GPa) 2.01 1.308 

Transverse shear modulus, (GPa) 0.924 1.308 

Axial Poisson’s ratio   0.36 0.30 

Transverse Poisson’s ratio 0.37 0.30 

Axial tensile strength, (MPa) 2760.0 72.0 

Shear strength, (MPa) 21.0 34.0 

Density, ρ (kg/m
3
) 1440 1650 

 

For future uses, the axial fiber direction is denoted with a 1, and the transverse 

directions are denoted as 2 and 3, where 3 is the out-of-plane tangent direction. 

Many models exist for determining the properties of a unidirectional composite 

with straight fibers; however, plain-woven composites do not have straight fibers (Figure 

16) (Kaw 2006). The waviness of the fibers must be accounted for to effectively 

determine the engineering properties of the textile.  

A high denier (1500-denier, 0.11 diameter) Kevlar® 29 fiber is chosen for the 

textile, with the pitch set at 3.175 mm. This value was selected to create a textile with a 

high structural integrity (Hahn, et al. 2002). The fabric is modeled as having 12.5 threads 

per inch (in both fill and warp directions), which gives a fill and warp spacing of 2.032 
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mm. Since the pitch and warp-fill spacing has been established, the cover factor may be 

checked. The cover factor is the ratio of warp-fill spacing to pitch and is a method to 

determine if the textile is too loose or if yarn degradation has taken place in the weaving 

process (Tabiei and Nilakantan 2008). For a ballistic textile, the cover factor should be 

between 0.60 and 0.95 (Tabiei and Nilakantan 2008). In this work, the cover factor is 

0.64, and therefore acceptable for a ballistic textile.  

To find the textile engineering properties requires two steps. First, the effect of 

the angle of crimp is not considered. During these first steps, the warp, fill and matrix 

components are each isolated and the effective properties are found for each. The second 

step is to predict the engineering properties to include effect of undulation, or the angle of 

crimp.  

Starting the process of finding the individual yarn and matrix properties, requires 

first that the yarn stress partitioning parameter(s),   is/are found using Equation 8 (Hahn, 

et al. 2002). 
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Equation 8 Equations for finding the stress partitioning parameters of the textile. 

where w is the warp,  f  is the fill, and m is the matrix. This same notation, used as 

subscripts will be used throughout the calculation. 

 The bulk modulus, K  (Pa) of the yarn(s) and matrix is now found using Equation 

9 (Hahn, et al. 2002). 
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Equation 9 Equations used to determine the bulk modulus of the yarns and matrix. 

The remaining yarn stress partitioning parameters may now be found by using 

Equation 10. 
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Equation 10 Additional yarn stress partitioning parameters. 
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 Assuming that the matrix does not contribute to the total thickness of the textile, 

and that all gaps in the weave are filled by the fill or the warp, then the area of the warp 

(and fill) may be found using Equation 11 (Hahn, et al. 2002). 

fg hW 
 

gww WLa 
 

wg hF 
 

gff FLa 
 

Equation 11 Method for finding the area of the warp (and fill). 

where gW  is the gap caused by the warp, fh  is the diameter of the fill, gF  is the gap 

caused by the fill, wh  is the diameter of the warp, fL
 
is the fill spacing, and wL

 
is the 

warp spacing. 

The volume occupied, V by the various components may be found by using 

Equation 12 (Hahn, et al. 2002). 
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0int ravoidV
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Equation 12 Equations used to determine the volume occupied by the various components. 

where wy is the warp yarn, fy is the fill yarn, im is the interyarn matrix, TT  is the total 

thickness of the textile, and fV  is the fiber volume fraction. 

Now, with the stress partitioning factors, bulk modulus, and occupied volumes 

calculated, the individual yarn properties may be predicted. First, the axial Young’s 

modulus, 1E  (Pa) of the warp and fill is determined by using Equation 13 (Hahn, et al. 

2002). 
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Equation 13 Equations to determine the Young's modulus of the yarns. 

Two of the six Poisson’s ratios, v for the warp and fill may be determined using 

Equation 14 (Hahn, et al. 2002). 

 

 

 

 

 



www.manaraa.com

 46 

 
12212

2

12

1
mymwxf

ymf

w vVvV
VV

v 




















 

ww vv 1213 
 

 
12212

2

12

1
mymfxf

ymf

f vVvV
VV

v 




















 

ff vv 1213 
 

Equation 14 Equations to find the Poisson's ratios for the yarns. 

Now, all three of the yarn shear moduli, G (Pa) may be determined by using 

Equation 15 (Hahn, et al. 2002). 
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Equation 15 Equations for determine the three shear moduli of the yarns. 
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The bulk modulus, K (Pa) for the fill and warp fibers may be determined using 

Equation 16 (Hahn, et al. 2002). 
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Equation 16 Remaining yarn bulk moduli equations. 

The remaining two fill and warp Young’s moduli, E (Pa) may be determined 

using Equation 17 (Hahn, et al. 2002). 
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Equation 17 Remaining Young's moduli equations for the yarns. 

In Equation 17, the subscripts 2 and 3 correspond to the tangent yarn directions, 

where the 3 is through the thickness of the yarn.  
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The remaining four Poisson’s ratios, v for each of the yarns, and the three 

remaining Poisson’s ratios for the matrix may now be determined using Equation 18 

(Hahn, et al. 2002). 
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Equation 18 Remaining equations for the Poisson's ratios of the fill, warp, and matrix. 
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The individual yarn (warp and fill) and matrix compliance matrices,  S  may be 

populated by the following Equation 19 (Hahn, et al. 2002) (Kaw 2006). 
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Equation 19 Equation to develop the individual yarn and matrix compliance matrix. 

In general, the inverse of the compliance matrix is the stiffness matrix, and can be 

calculated for each yarn and matrix by using Equation 20 (Kaw 2006). 

    1
 ii SC

 

    1
 ii CS

 

Equation 20 Determining the individual yarn and matrix stiffness matrix. 

The subscript i is a general notation used to represent the warp (w), fill (f) or 

matrix (m).  

The effect of the yarn crimp angle, or the yarn undulations has not yet been 

considered. This effect changes the overall value of the engineering constants, and must 

be considered for an accurate prediction. To consider the undulation effects, first the 

geometric efficiency values, V must be calculated for each yarn in each direction (both 

weave directions).  This is done by the following Equation 21 (Hahn, et al. 2002).  
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Equation 21 Method used to determine the geometric efficiency factors. 

In Equation 21, the hw (hf) and Lw (Lf) terms represent the height of the warp (or fill), and 

warp (or fill) spacing, respectively. Additionally, the x and y directions correspond to the 

two weave directions.   

The invariants of the stiffness matrices found in Equation 20 for the fill, warp and 

matrix may now be determined using Equation 22 (Hahn, et al. 2002). 

        iiiii CCCCU 5,53,13,31,11 4233
8

1


 

    iii CCU 3,31,12
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1


 

        iiiii CCCCU 5,53,13,31,13 42
8

1


 

        iiiii CCCCU 5,53,13,31,14 46
8
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        iiiii CCCCU 5,53,13,31,15 42
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    iii CCU 3,22,16
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    iii CCU 3,22,17
2

1


 

    iii CCU 6,64,48
2

1


 

    iii CCU 6,64,49
2

1


 

Equation 22 Equations for determining the invariants of the stiffness matrix components. 

With the invariants determined, using Equation 22 and the geometric efficiency 

values calculated in Equation 21, the textile stiffness matrix,  TC  may be formed by 

using Equation 23 (Hahn, et al. 2002). 

       mimffywwwwwwyT CVCVUVUVUVC 1,12,2322111,1 
 

       mimwwyffffffyT CVCVUVUVUVC 2,22,2322112,2 
 

       mimffffffywwwwwwyT CVUVUVUVUVUVUVC 3,332211322113,3 
 

       mimffffywwwwyT CVUVUVUVUVC 2,17167162,1 
 

       mimffffywwwwyT CVUVUVUVUVC 3,17263143,1 
 

       mimffffywwwwyT CVUVUVUVUVC 3,23147263,2 
 

       mimffffywwwwyT CVUVUVUVUVC 4,43259184,4 
 

       mimffffywwwwyT CVUVUVUVUVC 5,59183255,5 
 

       mimffffywwwwyT CVUVUVUVUVC 6,69189186,6 
 

Equation 23 Equations for developing the textile stiffness matrix. 

where wy is the warp yarn volume, fy is the fill yarn volume, and im is the intermatrix 

yarn volume. 
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Now that the undulation effects have been accounted for, and the plain-weave 

textile stiffness matrix   TC  has been populated, Equation 20 may be used to determine 

the textile compliance matrix  TS , and in turn the various textile engineering constants 

may be predicted (Kaw 2006). The three Young’s moduli of the textile may be 

determined using Equation 24. 
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Equation 24 Equations for the three Young's moduli of the textile. 

The six Poisson’s ratios for the textile are calculated by using Equation 25 (Kaw 

2006). 
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Equation 25 Equations used to determine the six Poisson's ratios of the textile. 

Lastly, the textile shear moduli are found using Equation 26 (Kaw 2006).  
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Equation 26 Equations used for the three shear modulus of the textile. 

The number subscripts in parenthesis correspond to the respective element 

location of the textile compliance matrix.  

The calculated textile stiffness matrix,  TC  is shown in Equation 27 and the 

compliance matrix  TS  is shown in Equation 28. 

  GPa

6382.100000

08624.00000

008624.0000

0007015.35311.15315.1

0005311.17704.235505.1

0005315.15505.17707.23



























TC

 

Equation 27 Generated Kevlar 29 textile stiffness matrix. 
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GPa

1

6104.000000

01596.10000

001596.1000

0002844.00172.00172.0

0000172.00433.00017.0

0000172.00017.00433.0

































TS

 

Equation 28 Generated Kevlar 29 textile compliance matrix. 

 Table 17 shows the plain-woven predicted textile engineering constants 

calculated from Equation 24, Equation 25, and Equation 26. 

Table 17 Engineering constants of the Kevlar 29 textile. 

Young’s Modulus, E1 (GPa) 23.1007 

Young’s Modulus, E2 (GPa) 23.1007 

Young’s Modulus, E3 (GPa) 3.5163 

Poisson’s ratio, v12 0.03963 

Poisson’s ratio, v23 0.3972 

Poisson’s ratio, v31 0.06048 

Shear Modulus, G12 (GPa) 1.6382 

Shear Modulus, G23 (GPa) 0.86236 

Shear Modulus, G13 (GPa) 0.86236 

 

 As shown, the out-of-plane Young’s modulus is much lower than the two tangent 

direction Young’s moduli. This is expected given the typical physical response of a 

textile material. Additionally, the shear moduli are all low, contributing to the flexibility 

of the textile, and further confirming the predicted results. 

5.7 Dynamic Material Properties and Failure Criteria     

Once impacted, the loading of the armor system and projectile is expected to be 

that of a high strain-rate dynamic response. Static or quasi-static loading is not expected 

given the short impact times and high impact speeds. Because of this expected response, 

dynamic material properties and failure criteria for the aluminum, aluminum-oxide, lead, 
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copper, and Kevlar® must be considered. Additionally, because the deformation is also 

expected to be both elastic and plastic, effects such as strain hardening must be 

considered for aluminum, lead and copper. 

The dynamic properties used to model the aluminum and lead are in the form of a 

Steinberg-Guinan strength model (SAS IP, Inc. 2009). This model takes into account the 

high strain plastic deformation and is commonly used for impact analysis. The material 

properties are shown in Table 18 (aluminum – AL7075-T6) and Table 19 (lead - LEAD) 

and were obtained via the ANSYS 12.1 Engineering Properties Library (SAS IP, Inc. 

2009). 

Table 18 Dynamic material properties used to model aluminum. 

Density (kg/m
3
) 2804 

Shear Modulus (GPa) 26.7 

Steinberg Guinan Strength 

    Initial yield stress (MPa) 420 

    Maximum yield stress (MPa) 810 

    Hardening constant 965 

    Hardening exponent 0.1 

    dG/dP 1.741 

    dG/dT (MPa/K) −16.450 

    dY/dP 0.02788 

    Melting Temperature (K) 1220 

Shock Equation of State (EOS) 

    Gruneisen Coefficient 2.2 

    Parameter C1 (m/s) 5200 

    Parameter S1  1.36 
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Table 19 Dynamic material properties used to model lead. 

Density (kg/m
3
) 25105 

Shear Modulus (GPa) 8.6 

Steinberg Guinan Strength 

    Initial yield stress (MPa) 8.0 

    Maximum yield stress (MPa) 100 

    Hardening constant 110 

    Hardening exponent 0.52 

    dG/dP 1 

    dG/dT (MPa/K) −9976 

    dY/dP 0.0009304 

    Melting Temperature (K) 760 

Shock Equation of State (EOS) 

    Gruneisen Coefficient 2.74 

    Parameter C1 (m/s) 2006 

    Parameter S1  1.429 

 

The dynamic material properties chosen for the plastic deformation of the copper 

jacket is that of a multilinear isotropic hardening model (SAS IP, Inc. 2009). Again, the 

properties for this material were obtained via the ANSYS 12.1 Engineering Properties 

Library (COPPER) (SAS IP, Inc. 2009) and are shown in Table 20. 

Table 20 Dynamic material properties used to model copper. 

Density (kg/m
3
) 8900 

Shear Modulus (GPa) 46.4 

Multilinear Isotropic Hardening Values 

     Plastic Strain 1 (m/m) 0 

     Plastic Strain 2 (m/m) 0.3 

     Plastic Strain 3 (m/m) 1.5 

     Stress 1 (MPa) 120 

     Stress 2 (MPa) 450 

     Stress 3 (MPa) 450 

     Scale 1 

     Offset 0 

Shock Equation of State (EOS) 

    Gruneisen Coefficient 2 

    Parameter C1 (m/s) 3958 

    Parameter S1  1.497 
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 Aluminum-oxide does not plastically deform like the other three materials. 

However, the dynamic response will differ from when statically loaded. To simulate the 

response of aluminum-oxide under dynamic loading, a Johnson-Holmquist strength 

model is used (SAS IP, Inc. 2009). Like the other three material properties shown thus 

far, ANSYS 12.1 Engineering Properties Library (AL2O3-99.7) is used to obtain the 

values shown in Table 21 (SAS IP, Inc. 2009).   

Table 21 Dynamic material properties used to model Aluminum Oxide. 

Density (kg/m
3
) 3800 

Shear Modulus (GPa) 46.4 

Bulk Modulus (GPa) 200 

Johnson-Holmquist Strength Continuous 

    Hugoniot Elastic Limit (MPa) 5900 

    Intact Strength Constant  0.989 

    Intact Strength Exponent  0.3755 

    Strain Rate Constant 0 

    Fracture Strength Constant  0.77 

    Fracture Strength Exponent  1 

    Maximum Fracture Strength Ratio 0.5 

    Damage Constant 1 0.01 

    Damage Constant 2 1 

    Bulking Constant  1 

    Hydrodynamic Tensile Limit (MPa) −29 

Polynomial Equation of State 

    Parameter A1 (GPa) 200 

    Parameter T1 (GPa) 200 

 

 The static failure (and quasi-static failure) of the Kevlar® woven and laminated 

fibers is well researched and documented. However, little is known about the plastic 

deformation and dynamic failure of a Kevlar® fiber. This is primarily because of the 

differences in fiber, matrix, weave and impact types. Research has shown that while 

impacted in the transverse direction, plain-woven Kevlar fibers do indeed have a linear 

stress-strain curve (in the warp and fill or tangent directions) to failure (Gellert, Pattie and 
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Woodard 1998). These same tests also show that plain-woven Kevlar fabrics appear to 

have a ballistic strain value that is much higher than the static strain to failure value  

(Berg, et al. 2005). In addition to Table 17, the failure parameters of the plain-woven 

Kevlar® 29 fabric are shown in Table 22.  

Table 22 Dynamic failure properties of the woven Kevlar fabric. 

Apparent ballistic axial strain to failure 0.15 

Assumed ballistic shear strain to failure 1×10
20 

 

As shown in Table 22, the apparent ballistic axial and shear strain values are 

relatively high, especially compared to static test values. The textile is not expected to fail 

from being twisted or bent, as the textile is highly ductile in the out-of-plane directions. 

The direction of observed failure is in the direction of weave, or the tangent directions.  

The behavior of the fibers is shown to be that of a viscoelastic material (Tabiei 

and Nilakantan 2008). The strain value at failure is highly dependent upon the applied 

strain rate and other constants that must be determined experientially. Again, because of 

vast differences in fiber type, matrix type, weave patterns and impact velocities, these 

constants required for the typically used viscoelastic spring-dashpot model are not well 

known (Tabiei and Nilakantan 2008).     

What is known about the failure of woven Kevlar® fabric panels is that when 

impacted transversely and directly at a high velocity, the strain and stress becomes 

localized to a small area and cannot be transferred to the surrounding fibers, causing the 

impacted fibers to be sheared (literally cut) in the normal (out-of-plane direction) 

direction (Tabiei and Nilakantan 2008). On the contrary, when impacted at a low 

velocity, the fabric has time to deflect in the transverse direction which causes the 

projectile to become entangled in the fibers of the fabric, thereby increasing the fiber 
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contacts. The failure mode in these low velocity impacts is prominently that of yarn 

pullout, excessive creasing and stretching (Tabiei and Nilakantan 2008). These failure 

traits will be examined in the analysis to confirm the accuracy of the material response.     
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CHAPTER 6  BIPLATE DESIGN AND ANALYSIS 

An important design parameter to the biplate is determining the individual layer 

thicknesses. One may start with the assumption of equal thickness of the aluminum-oxide 

and aluminum layers for optimal performance. However, we will later show that this is 

not the case. Once impacted, the failure of the ceramic is nearly certain. Before and 

during failure the ceramic portion of the plate serves to prolong the dwell duration, 

degrade the projectile tip and distribute the impact forces to the lower aluminum. The 

aluminum then elastically and plastically deforms to absorb the remaining energy. 

6.1 Biplate Finite Element Analysis – Setup  

To aid in the design of the ballistic plate, finite element analysis using ANSYS 

Workbench 12.1 Explicit Dynamics (with the AUTODYN solver) is conducted (SAS IP, 

Inc. 2009). While maintaining a constant overall thickness, six different plate thickness 

combinations (see Figure 17) were imported into ANSYS and impacted with a rigid 

sphere travelling at a set initial velocity of 940 m/s.  

 

Figure 17 General cross section of the biplate (not drawn to scale). 
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For this work, the overall biplate thickness (tp) and width (Wp) are fixed at 8.8 mm 

and 76.2 mm, respectively (to help accomplish the objectives listed in Table 8). The 

thicknesses of the aluminum (tm) and aluminum-oxide (tc) were adjusted six different 

times. As shown in Figure 17, a layer of plain-woven (tk, 0.5 mm thick) Kevlar 29® 

fabric is bonded to the surface of the top plate. This is to contain any ceramic fragments 

that may separate from the aluminum-oxide once impacted, and to increase the plate 

multiple-hit capability. The sphere impact direction is normal to (0° angle of incidence) 

the exposed face of the top plate (Figure 18).  

 

Figure 18 Sphere, Kevlar, ceramic, and aluminum components of the biplate (1.5 mm aluminum 

thickness shown). 

The material properties used for the aluminum and aluminum-oxide are shown in 

Table 18 and Table 21, respectively. The sphere was modeled with a diameter of 9 mm, 

using the mass properties of steel, and with a rigid physical behavior (no deflection can 

occur within the sphere body). This is done so that the only method of system energy 

transfer from the projectile to the ballistic plate is via strain energy and plastic 

deformation/material fracture of the plate components. Both the biplate and the sphere 

were meshed using hexagonal (hex8) and tetrahedral (tet4) elements with a medium 

relevance center with a value of 50. The connection(s) between the Kelvar® sheet, 
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aluminum-oxide and aluminum are bonded, whereas the connection(s) between the 

sphere and all other bodies is/are frictionless. The finite element model of the ballistic 

plate was rigidly constrained along the plate edges. This is done so that the biplate may 

not move within the reference plane, and so the projectile may perforate the plate, if 

physically possible. Figure 19 and Figure 20 each show an image of one of the six 

meshed models, and Table 23 lists the simulation number with the corresponding 

thickness values, meshed nodes, elements, and the average element aspect ratio.  

 

Figure 19 Screen image of a meshed model, side cross-section view shown. 

 

Figure 20 Screen image of a meshed model, orthogonal view shown. 
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Table 23 Number of simulations with layer thickness, and mesh information. 

Test # 
Thickness (mm) Mesh details 

Aluminum Al2O3 Nodes Elements Aspect ratio 

1 0.00 8.30 16971 22501 2.398 

2 1.50 6.80 20188 24271 2.401 

3 3.30 5.00 18741 22919 2.376 

4 4.15 4.15 19975 24137 2.396 

5 6.80 1.50 20179 24223 2.403 

6 8.30 0.00 16960 22440 2.404 

 

As one can see from Table 23, the amount of required nodes and elements 

changed significantly between each simulation, however the aspect ratio of the element 

dimensions were kept about the same for each simulation.  

6.2 Biplate Finite Element Analysis - Results  

For the FEA, the deflection and the equivalent stress was recorded for all bodies. 

Additionally, the translational average body velocity was recorded for the impacting 

sphere. Figure 21 shows a screen shot of the cross-section of one of the six finite element 

models at various analysis times, captured from the solution video.  
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Figure 21 Cross-sectional view of the impact at various times.    

A similar response to what is shown in Figure 21 was recorded for the other five 

finite element simulations. The aluminum-oxide failed due to fracture whereas the 

aluminum underwent elastic, then plastic deformation, and ultimately was perforated by 

the sphere. The top Kevlar® appeared to serve the design purpose of catching the 

fragments, although this was difficult to confirm. Regardless, the Kevlar® did not seem 

to contribute to the slowing of the sphere. 

Once the finite element modeling was complete, the results could be tabulated. As 

mentioned, the translational velocity of the sphere was recorded during the impact. 

Generated in MATLAB® (TheMathWorks, Inc. 2008), Figure 22 shows the sphere 

velocity of each of the six simulations during the entire impact time. Notice that up until 

approximately 12 μs, the velocity of the projectile is nearly the same for each simulation, 

and varies from that point until the end of the simulation(s) for each combination.  
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Figure 22 Average mass projectile velocities vs. impact time. 

The translational velocity is also used to determine the energy absorbed by the 

ballistic plate.  Assuming that the projectile remains intact (as one mass, and in this case 

it does), the amount of energy absorption for the biplate, PE (J), can be related to the 

projectile mass (kg) and velocity (m/s) by using Equation 29 (David, Gao and Zheng 

2009). 

 22

2
1

reinP VVmE     

Equation 29 Kinetic energy absorption of the ballistic plate. 

where inV  is the initial projectile velocity, and reV  is the residual projectile velocity. 

 Table 24 shows the FEA results with the calculated energy absorption for the 

various biplate configurations (with an initial sphere kinetic energy of 2647.6 J). 
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Table 24 Finite element analysis results for the biplate. 

Test # 

Thickness (mm) Finite Element Analysis Results 

Aluminum Al2O3 Cycles to 

completion 

Residual 

Velocity (m/s) 

Energy 

absorption (J) 

1 0.00 8.30 4351 519.04 920.07 

2 1.50 6.80 2914 540.75 885.60 

3 3.30 5.00 2916 441.60 1031.5 

4 4.15 4.15 2914 380.70 1106.5 

5 6.80 1.50 2914 29.80 1322.3 

6 8.30 0.00 2925 0.00 1323.6 

 

As shown, the residual velocity of the projectile is not a linear response for the 

various configurations, and thus neither is the energy absorption.    

Figure 23 shows the energy absorption capability of the biplate as a function of 

the overall aluminum thickness value. In this figure, the recorded FEA results are shown 

with square data points and these values are then interpolated using a cubic-spline model. 

 

Figure 23 Calculated energy absorption vs. aluminum thickness. 

As mentioned, the energy absorption value at the various thicknesses is not linear. 

According to the cubic-spline model, the minimum and maximum energy absorption 
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values would occur at approximately 0.75 and 7.5 mm of aluminum thicknesses, 

respectively. It is thought that this is related to the lack of layer contact area interactions 

in assisting distribution of the dynamic loads. 

6.3 Biplate Analytical Analysis 

In addition to energy absorption, the ballistic biplate also serves to degrade the 

projectile. Because the impacting sphere is modeled as rigid, this behavior is not 

represented in the FEA shown in Section 6.1. To relate the ability of the biplate to 

degrade the projectile tip with the thickness of the top layer, the material speed of sound 

is considered. Recall that the dwell duration is the time that the ceramic remains 

stationary, while the compressive shock wave propagates at the speed of sound (Section 

3.2). The time to form the damage cone is related to both the speed of sound of the 

material and the conoid angle as shown in Figure 24.  

 

 Figure 24 Drawing of the formed damage cone with conoid angle. 

The conoid angle, 
 
(radians), is directly dependent upon the impact velocity inV  

(m/s) and can be approximated using Equation 30 (Fellows and Barton 1999).  

180

34

180

34

780

220 
 







 
 inV

 

Equation 30 Conoid angle given impact velocity. 
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Equation 30 is only valid for impact velocities varying from 220 to 1000 m/s. For 

impact velocities over 1000 m/s, a constant conoid angle of 68° may be used (Fellows 

and Barton 1999).  

 The distance SD  (m) that the shock wave must propagate through to form the 

damage cone is governed by the conoid angle and the thickness of the top ceramic layer 

and may be found using the laws of right triangles with Equation 31 (Bittinger, et al. 

2001). 

 cos

C
S

t
D   

Equation 31 Distance that the shock wave travels during dwell. 

where Ct  
is the thickness (m) of the top ceramic layer. 

 Now, by using Equation 3 and Equation 31, the dwell duration DT  (s) may be 

calculated using Equation 32. 

a

D
T S

D 
 

Equation 32 Dwell duration of a ballistic impact. 

 Table 25 shows the calculated dwell duration along with the energy absorption 

capability for each of the six biplate combinations. 

 

 

 

 

 



www.manaraa.com

 69 

Table 25 Energy absorption and dwell duration for the various biplate combinations. 

 Thickness (mm) Calculated Values 

Test # Aluminum Al2O3 Energy 

Absorption (J) 

Dwell 

Duration (μs) 

1 0.00 8.30 920.07 1.2242095 

2 1.50 6.80 885.60 1.0029668 

3 3.30 5.00 1031.5 0.7374756 

4 4.15 4.15 1106.5 0.6121047 

5 6.80 1.50 1322.3 0.2212427 

6 8.30 0.00 1323.6 0 
 

As shown in Table 25, the relationship of dwell duration and ceramic thickness 

may be expressed as, the thicker the aluminum-oxide, the longer the dwell duration. This 

linear relationship is shown in Figure 25.  

 

Figure 25 Calculated dwell duration vs. aluminum thickness. 

The ideal ballistic plate will degrade the projectile tip as much as possible, thus 

increasing the contact area(s) and decreasing the various contact pressures (stress). For a 

relatively ductile projectile, the erosion process is fluid-like and is referred to as 
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―mushrooming‖ (Fellows and Barton 1999). Ideally, the mushroomed projectile converts 

kinetic energy to internal/strain energy in a process of plastic deformation to the shape of 

a cylinder (or a similar shape). To be effective, this deformation process must also occur 

prior to the forming of the damage cone, that is, during the dwell duration.    

To estimate the amount of deformation of the projectile tip requires several 

assumptions to be made. For this work, three assumptions are made, and they are:  

1) that the projectile tip velocity is zero during the erosion process,  

2) the rear of the projectile continues forward at a constant velocity (the impact 

velocity),  

3) and the tip of the projectile maybe simplified and modeled as a triangle.  

With these assumptions, and knowing the ballistic plate dwell duration calculated using 

Equation 32, one may estimate the geometry of the projectile immediately following the 

end of the dwell duration. It is important to note that because the dwell duration is 

dependent upon impact velocity and plate thickness, the projectile erosion will also be 

dependent upon these variables. 

Once the damage cone forms, the projectile continues to erode, but the aluminum-

oxide aluminum contact area is fixed. This contact area may be increased if the contact 

area between the projectile tip and the ceramic is increased prior to the end of the dwell 

duration. Using the law of similar triangles (Bittinger, et al. 2001), and the assumptions 

mentioned previously, and in the case of the 5.56×45 mm NATO projectile, the eroded 

tip diameter, ed (m) is estimated by Equation 33.  

  











t

p

inDe
h

d
VTd  

Equation 33 Equation for determining the eroded projectile tip diameter. 



www.manaraa.com

 71 

where th  is the height of the tip (m) and pd  is the nominal diameter of the projectile (m) 

The area of contact, CA  (m
2
) between the aluminum-oxide and aluminum layers 

may now be estimated in terms of the conoid angle,   by Equation 34 as. 

  2
tan2

4

1
ceC tdA    

Equation 34 Estimation of the aluminum-oxide aluminum contact area given conoid angle. 

Combining Equation 30 and Equation 33 with Equation 34, the contact area may 

be estimated in terms of impact velocity in Equation 35. 
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Equation 35 Aluminum-oxide aluminum contact  area in terms of impact velocity.  

  Given a ceramic layer thickness of 5 mm and a 5.56×45 mm NATO projectile 

travelling at muzzle velocity (Table 1 - 940 m/s),  the estimated aluminum-oxide 

aluminum contact  area using Equation 35 is 387.5 mm
2
, in contrast to 374.2 mm

2
 in the 

case with no projectile erosion (i.e. 0DT ) using the same thickness of the aluminum-

oxide. This is approximately a 4 % difference in contact area, which can be significant.   

Table 26 Estimated aluminum-oxide aluminum contact  area. 

Test # 
Thickness (mm) Contact Area 

(mm
2
) Aluminum Al2O3 

1 0 8.30 1067.662 

2 1.50 6.80 716.631 

3 3.30 5.00 387.452 

4 4.15 4.15 266.916 

5 6.80 1.50 34.871 

6 8.30 0 0 
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 As shown in Table 26, as the thickness of aluminum-oxide decreases, the 

aluminum-oxide aluminum contact area decreases. A high contact area is desirable, but as 

the thickness of ceramic increases, the effective protective area of the biplate is 

decreased. This must be considered toward determining the final geometry. 

 Another consideration in designing the biplate is to identify any potential plate 

weak spots. One such weak spot would be when impacted in such a location so that the 

aluminum-oxide aluminum contact area is not at the maximum. Since the plate is square, 

an effective or critical width may be determined to help identify this potential weak spot. 

This dimension relates the thickness of the ceramic layer with the conoid angle, angle of 

skew, and eroded tip diameter to determine the maximum distance measured from the 

plate edge that a projectile may impact and the biplate may still have maximum 

aluminum-oxide aluminum contact. The critical width concept is shown in Figure 26. 

Note that two damage cones are shown, and these are the extreme cases which still yield 

a maximum aluminum-oxide aluminum contact area.     

 

Figure 26 Critical width concept showing two extreme damage cones (Not drawn to scale). 

Using the laws of right triangles (Bittinger, et al. 2001), Equation 31, and 

Equation 33, the critical width, Wc (mm) may be approximated with Equation 36.  

 



www.manaraa.com

 73 

   
 

























t

p

inD
cc

pc
h

d
VT

tt
WW

2

1

tantan 
 

Equation 36 Critical width equation. 

Equation 36 may be combined with Equation 30 to estimate the critical width in 

terms of impact velocity, Vin  (m/s) and results in Equation 37. 
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Equation 37 Critical width equation in terms of impact velocity. 

In Table 27, the calculated critical width is tabulated. Because the plate is square 

and skewed in two directions, the critical width corresponds to two dimensions, therefore 

the critical protection area may be found. The percent area reduction compares the critical 

area to that of a 76.2 × 76.2 mm plate, or 5806.44 mm
2
.   

Table 27 Calculated critical width shown with area reduction. 

Test # 
Thickness (mm) Critical Width 

(mm) 

Critical Area 

Reduction (%) Aluminum Al2O3 

1 0 8.30 63.78 29.95 

2 1.50 6.80 66.02 24.93 

3 3.30 5.00 68.72 18.68 

4 4.15 4.15 69.99 15.64 

5 6.80 1.50 73.96 5.81 

6 8.30 0 76.20 0 

 

Notice from Table 27 that the critical width increases with decreasing thickness in 

aluminum-oxide. It is important to point out that although the protective area is 

increasing with decreasing aluminum-oxide, the actual aluminum-oxide aluminum 

contact area is decreasing. The decreasing aluminum-oxide aluminum contact area 

increases the chances of an armor perforation.  
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The biplate design is a classic example of balance and trade-offs between energy 

absorption, tip erosion, contract, protection areas, minimal weak spots and overall 

thickness/weight.     

6.4 Geometry Selection of the Biplate 

As shown in Section 6.3, to select the geometry of the biplate requires the proper 

balancing of the ability to absorb energy, erode the projectile tip, and to increase layer 

contact area(s) while maintaining a relatively small thickness and low weight. It has 

already been determined in Section 4.4 - Design Plan and Concept Proposal that the best 

arrangement of ballistic plates for mobility and dexterity is that of a two-dimensional 

matrix. It was also determined that to minimize the gaps between the small ballistic 

plates, a double-skewed plate geometry will be implemented, as shown in Figure 17. The 

angle of skew, overall plate thickness and width are fixed at 45°, 8.8 and 76.2 mm, 

respectively (Section 6.3). Additionally, to keep the plate symmetric, both the length and 

width are to be the same.  

Because the plate is square, the minimum length/width dimension(s) can be 

determined using the contact area(s) in Table 26, and are tabulated in Table 28. 

Table 28 Minimum plate dimension for various plate combinations. 

Test # 
Thickness (mm) Contact Area 

(mm
2
) 

Minimum 

Dimension (mm) Aluminum Al2O3 

1 0 8.30 1067.662 32.68 

2 1.50 6.80 716.631 26.77 

3 3.30 5.00 387.452 19.68 

4 4.15 4.15 266.916 16.34 

5 6.80 1.50 34.871 5.91 

6 8.30 0 0 0 

 



www.manaraa.com

 75 

 Table 28 sets the minimum width dimension by assuming that the projectile 

impacts directly in the center of the biplate, as the shock wave travels radially and evenly 

outward from the impact point. These minimum values confirm that in all cases, the set 

biplate width of 76.2 mm is sufficient to meet the desired aluminum-oxide aluminum 

contact  area.  

 To decide the individual layer thicknesses requires that the designer balance many 

variables. These variables include the plate capability to: 

1) absorb energy,  

2) degrade a projectile tip,  

3) increase aluminum-oxide aluminum contact  area, and 

4) increase critical protection area. 

These variables must also be balanced with a low areal density to meet the goals set forth 

in Table 8 Design goals and subgoals of the hybrid armor system. To aid in the decision 

process, a scoring matrix is used in a similar method that was shown in Section 5.4, to 

include a multiplication factor (MF), normalized value (NV), and score value (SV). 

Table 29 shows the summarized trait values, while Table 30 shows the tabulated 

score values for each of the layer combinations. 

Table 29 Layer combinations listed with trait values. 

 Layer Combination (Al2O3/Al) 

Trait 6.8/1.5 5.0/3.3 4.15/4.15 1.5/6.8 

Areal density, AD (kg/m
2
) 31.143 29.07 28.10 25.05 

Energy absorption, EA (kJ) 885.60 1031.5 1106.5 1322.3 

Dwell time, DT (µS) 1.003 0.738 0.612 0.221 

Layer contact area, LCA (mm
2
) 716.63 387.45 266.92 34.87 

Critical width, CW (mm) 66.02 68.72 69.99 73.96 
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Table 30 Scoring table for various biplate layer thicknesses. 

 Layer Combination (Al2O3/Al) 

 6.8/1.5 5.0/3.3 4.15/4.15 1.5/6.8 

Trait MF NV SV NV SV NV SV NV SV 

A AD 5 1 5 0.933 4.667 0.902 4.511 0.804 4.022 

Total: A 5 -- 5 -- 4.667 -- 4.511 -- 4.022 

B 

EA 4 0.670 3.349 0.780 3.900 0.837 4.184 1 5 

DT 2 1 2 0.736 1.472 0.610 1.220 0.220 0.441 

LCA 3 1 3 0.541 1.622 0.372 1.117 0.049 0.146 

CW 5 0.893 4.463 0.929 4.646 0.946 4.732 1 5 

Total: B 14 -- 12.812 -- 11.640 -- 11.253 -- 10.587 

B - A 9 -- 7.812 -- 6.973 -- 6.742 -- 6.564 

  

In Table 29, the areal density is calculated using Equation 2 with density values 

from Table 10 and Table 11. In Table 30, the normalized values were calculated using 

Equation 7. 

Because of the scoring determined from Table 30, the ultimate decision for 

determining the layer thicknesses was between two arrangements. Both the 6.8/1.5 and 

5.0/3.3 aluminum-oxide to aluminum thickness ratio biplates were considered. The final 

decision was to use the 5.0/3.3 type biplate, although it was the second highest scoring 

armor plate. This decision was made for two reasons, the first being related to the low 

weight subgoal set in Section 4.4. The chosen biplate (5.0/3.3) is about 7 % lighter than 

the 6.8/1.5 plate. The second reason is on the bases that the plate must absorb energy of a 

NIJ projectile. Therefore, as a design parameter the plate should be able to absorb at least 

half the energy of a 7.62 mm Soviet projectile, or about 1003 J (Table 1) before being 

perforated.  
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The final dimensions of the biplate are shown in Figure 27  and Figure 28.  

 

Figure 27 Final biplate dimensions - Top view (not drawn to scale). 

 

Figure 28 Final biplate dimensions - Side view (not drawn to scale). 

Recall that in Table 27 the critical width for the 5.0/3.3 plate combination is 68.72 

mm. This dimension is shown in Figure 29 along with the top area of highest risk if 

impacted, and for this work is termed as the ―danger zone‖. This area is bounded by the 

extremes of the two critical width dimensions and the plate edges. The danger zone is the 

area that if impacted would provide the least aluminum-oxide aluminum contact area and 

is noted for the analysis. 
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Figure 29 Top view of biplate with the critical dimension and the danger zone (not drawn to scale). 

The layout of the biplates as worn on a person, is shown in Figure 30. It shows 

fourteen biplates positioned around a model of a cross-sectional torso. The biplates are 

drawn to scale using the plate dimensions in Figure 27 and Figure 28. The torso is 

modeled as an ellipse where the major and minor axes are the measured dimensions of 

the author’s torso (17'' and 9'').    

 

Figure 30 Scaled layout of biplates on simulated torso section. 

In Figure 30, each plate is rotated approximately 5° relative to the previous to 

allow for the curvature about the torso section. The exception to this angle is the two 
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plates positioned at either outer end of the torso. These two plates are rotated about 15° to 

allow for curved coverage about this particular section. See Figure 67 in Appendix E to 

view other plates considered to avoid the tight curved sections. 
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CHAPTER 7  SYSTEM ANALYSIS 

7.1 Analysis Techniques 

The ultimate goal of this work is to design a flexible NIJ level III armor and to 

determine if the proposed design is feasible. To save time, money and other resources, 

finite element analysis (FEA) is used to simulate and predict the response of an NIJ P-

BFS test on the purposed body armor system in lieu of experimental testing.  As in 

Section 6.1, ANSYS Workbench 12.1 Explicit Dynamics (SAS IP, Inc. 2009) with the 

AUTODYN solver is used for the FEA in this section. Mainly, a 64-bit Windows 7 

operating system CPU with Intel® dual core processors at 3.00 GHz and 8 GB of RAM 

is used for the finite element analysis.  

Several combinations of projectile impact velocity, angle, and location were 

analyzed on a 3×3 biplate layout with underlying armor comprised of sixteen layers of 

plain-woven Kevlar® 29 fibers, as shown in Figure 31. Following the NIJ standards 

guidelines (U.S. Department of Justice 2008), modeling clay is used to record the 

backface signature (BFS). To save computational time and because licensing resources, 

the 3×3 biplate arrangement is used, and only the armor components of the layout are 

analyzed (that is, the armor carrier and cover shown in Chapter 4 are omitted from the 

FEA). The layout of the biplates is such that the spacing is 3 mm between each plate. 

Additionally, to save nodes, the biplate(s) that were not directly impacted by the 
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projectile were modeled with a rigid physical behavior, and a smaller than actual clay 

segment is used, measuring 50×250×250 mm (H×W×L).          

 

Figure 31 Armor layout used for the finite element model. 

7.2 Simulation Setup 

For the finite element analysis to realistically predict the outcome of a P-BFS test, 

numerous simulations must be completed. The location of the impact, angle of incidence, 

and impact velocity must all be adjusted. Weak points in the armor system must be 

identified, tested and compared to a hit in an ideal location to determine if the armor has 

failed the P-BFS test.  Figure 32 shows the four impact points considered for the FEA. 
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Figure 32 Impact points considered for the FEA. 

As illustrated in Figure 32, there are four impact points considered for the finite 

element analysis (A,B,C,D). Point A is the ideal point of impact, which is dead center in 

the biplate. Points B, C, and D each correspond to a logically or analytically driven weak 

point in the armor system. Point B is located at the center of the gap spacing between two 

biplates, Point C is the center of the corner connection between four biplates, and finally 

Point D is the center of the danger zone shown in Figure 29. Table 31 shows the impact 

location with the angle of impact (incidence) and amount of tests at the respective 

location. 

Table 31 Impact location shown with angle of impact.      

Point 0° 45° Total Tests 

A 4 4 8 

B 4 4 8 

C 4 0 4 

D 4 0 4 

 



www.manaraa.com

 83 

 In regards to Point B, the impact(s) at the 45° angle of incidence is referenced 

toward the angle of skew, thus parallel with the biplate skew angle. Each point is 

impacted one time per simulation, starting with the lowest and ending with the highest of 

the four set impact velocities. 

7.3 Analysis Impact Velocities 

For each impact point, the projectile initial velocity is adjusted. This is done to 

simulate an impact from the various projectiles in the NIJ level I, IIA, IIIA, and III 

categories. As mentioned in Section 5.2 Projectile Parameters, the only projectile 

geometry tested is the 5.56×45 mm NATO, and the impact velocity is adjusted to match 

the kinetic muzzle energy of a projectile(s) in the various NIJ categories. This serves two 

purposes; first the 5.56 NATO is a great armor piercing projectile, much better suited for 

penetrating armor than any other lesser projectile, and therefore a good indicator of if the 

armor will pass the respective NIJ test. The second purpose is to identify the safe linear 

range from the muzzle of the 5.56 NATO rifle that the armor system would theoretically 

protect the wearer. This range can be determined from tables generated by the U.S. 

Department of Defense that tabulate the velocity of the 5.56 NATO and measured 

distance (U.S. Department of Defense 1997).   

Table 32 Simulation impact velocities used for the FEA. 

Velocity 

(m/s) 

NIJ  

Level 

Kinetic 

energy (J) 

Equivalent 

range (m) 

282.8 I 160.0 > 500 

527.49 IIA 556.5 408 

860.81 IIIA 1482 85 

940.0 III 1711 0 
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 Note that in Table 32, the equivalent range of the NIJ level I armor is in excess of 

500 meters. This is because at this low velocity the, Department of Defense tables do not 

have any recorded data. The equivalent ranges for the IIA and IIIA levels were 

determined by linear interpolation between the data points in the Department of Defense 

tables.  

7.4 Modeling Clay Properties and Boundary Conditions   

The modeling clay used to measure the BFS is specified by NIJ standards to be a 

non-hardening oil based clay (U.S. Department of Justice 2008). The material properties 

of the oil based clay, to include the engineering constants, are difficult to obtain. This is 

partly because of the difficultly in conducting experiments on a highly ductile material, 

and partly because the properties are dependent upon many variables such as temperature 

(even slight variation in room temperature), prior large-strain history, and applied strain 

rate (Crandall, Kursweil and Kigam 1971); although, research does show that the 

modeling clay may be considered to be linear viscoelastic (Crandall, Kursweil and Kigam 

1971). For the purposes of this work, the clay is considered to be room temperature at 

20°C, and therefore the Young’s modulus may be taken to be 34.474 MPa (Crandall, et 

al. 1970). To determine the shear and bulk moduli, the Poisson’s ratio must be 

experimentally determined. For this work, the average dynamic Poisson’s ratio is taken to 

be 0.434 (Crandall, Kursweil and Kigam 1971). The shear modulus, G (MPa) may be 

found by Equation 38. 

 v

E
G




12
   

Equation 38 Shear modulus of a linear isotropic material. 
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With the calculated shear modulus, the bulk modulus, K may be determined using 

Equation 4. The density of the clay as well as other material properties is listed in Table 

33 (Crandall, Kursweil and Kigam 1971). 

Table 33 Dynamic material properties used for the modeling clay. 

Density (kg/m
3
) 1300 

Young’s modulus (MPa) 34.474 

Shear modulus (MPa) 12.02 

Bulk Modulus (MPa) 87.055 

Poisson’s Ratio 0.434 

 

 The boundary conditions for the finite element model are setup to simulate the 

effects of the NIJ P-BFS test. The model includes the ballistic plates, Kevlar® layers and 

the clay backing. The ballistic plates are made of Kevlar, aluminum-oxide, and 

aluminum, which are perfectly bonded to each other. In turn, the bottom of the ballistic 

plate is also perfectly bonded to the top layer of the multi-layered Kevlar® textile. The 

layers of the Kevlar®, however, are in frictionless contact with each other. The clay is 

simply supported on the bottom while using rollers on the vertical edges. These boundary 

conditions are assumed to simulate the rigid frame in where the clay is placed. 

 All of the nodes on the rear face of the clay have a fixed support boundary 

condition applied to them, thus all degrees of freedom are restricted. This is to simulate 

the rear removable rigid segment of the NIJ specified test rig. Figure 33 shows the 

schematic of the constraints used on the clay segment used for the FEA.  

 

Figure 33 Lower, rear face constraints used for the FEA (Side view of clay). 
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The nodes on all four of the side faces of the clay segment are supported only in 

the normal direction. Therefore, the sides may not bend or move outward in the 

perpendicular direction, but may move in either side-to-side or tangent direction(s). This 

is done to simulate the rigid side supports of the test rig, as per the NIJ standards (U.S. 

Department of Justice 2008). Figure 34 shows schematic of the clay side boundary 

conditions used for the finite element analysis.  

 

Figure 34 Side constraints used for the FEA (Top view of clay). 

7.5 Body Contact Interactions 

To simulate a realistic response, the contact interactions between each 

corresponding armor component must be carefully examined. For this work, only 

frictionless and bonded contact types are considered. Friction is not considered for two 

reasons: 

1) because of required increased computational time, and  

2) to be able to evaluate the armor on a ―worst case scenario‖.  

Although in reality friction will inevitable contribute to the armor energy absorption 

ability, the friction coefficient(s) will change based on uncontrollable external factors, 
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such as manufacturing techniques and the tangential and normal loading caused by the 

armor carrier being worn and/or covered by equipment, clothing and so on. 

The sixteen woven Kevlar® armor layers are each modeled with frictionless 

interactions between corresponding layers, and to the clay. For the three biplate 

components (top Kevlar layer, aluminum-oxide, aluminum), bonded contacts are used to 

permanently join each layer together. The nine biplates are then each bonded to a single 

layer 0.5 mm thick layer of Kevlar which has a frictionless interaction with underlying 

plain-woven Kevlar® layers. This is done to simulate both the separation of the two main 

armor components, where each is stored in a separated compartment in the armor carrier, 

and also to simulate the elastic bands holding the biplates together as a system.           

7.6 Point A Analysis – Zero Angle of Incidence 

Point A of Figure 32 is considered first for the FEA. As discussed in Section 7.3, 

four impact velocities are used to determine the BFS in the modeling clay. The velocity 

of the projectile was recorded over the entire impact time to determine if the projectile 

penetrated the armor system. To predict the backface signature, the maximum vertical 

deflection was recorded during the entire impact.  

Figure 35 shows the system layout for the finite element analysis of Point A.  
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Figure 35 Finite element analysis body layout for Point A analysis.    

The element mesh used for the analysis is shown in Figure 36. Notice that the clay 

is meshed using a sweep technique (SAS IP, Inc. 2007), which to reduce nodes gradually 

increases the element size from the source to the target.  

 

Figure 36 Element mesh used for Point A analysis. 

To mesh the geometry, hexagonal (hex8) and tetrahedral (tet4) (SAS IP, Inc. 

2007) elements are used. Some the mesh statistics are shown in Table 34. 
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Table 34 Mesh statistics for Point A analysis. 

Nodes 44649 

Elements 49095 

Average aspect ratio 5.951 

Average Jacobian ratio 1.000 

Relevance center Medium 

Relevance   -8  

  

The average aspect ratio is shown to quantify the quality of the mesh. The lower 

the aspect ratio (cannot be lower than one), typically the better and more accurate the 

response (Logan 2007). In this case, the aspect ratio is fair, showing some room for 

improvement. The Jacobian ratio is recorded to show consistency between each separate 

mesh setup.   

Figure 37 shows six frames taken from the resulting video created by the Point A 

equivalent stress analysis.  

 

Figure 37 Six frames of the Point A direct impact (NIJ IIA simulation shown). 
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One can see the damage cone forming in the first frame, 5 μs, which is 

momentarily after the dwell duration (calculated as 0.77 μs). Notice that the projectile is 

degrading within the first moments of impact, sending fragments outward from the 

impact point. This erosion is by design of the ceramic layer as part of the biplate. One can 

also see the Kevlar® under layers being first deflected then later torn apart; this is 

expected given the normal modes of textile failure discussed in Section 5.7.  

The results of the BFS and if the aluminum of the biplate and/or the entire system 

is penetrated for the analysis is tabulated in Table 35.  

Table 35 Simulation results for the Point A direct impact. 

 I IIA IIIA III 

Maximum deflection, BFS (mm) 0.67 10.94 35.5 > 55 

Penetration detected (Yes, No) No No No No 

Aluminum perforated (Yes, No)  No No Yes Yes 
 

As expected, the BFS increased with increasing impact velocity. The armor 

system was also able to protect the wearer from a penetrating projectile when impacted at 

the specified center location. The aluminum was penetrated in both the NIJ IIIA and NIJ 

III simulations, yet the armor system was not completely penetrated in any simulation. 

This test predicts that the armor system would fail the BFS (on account of the excessive 

NIJ III BFS) test and yet pass the perforation test. There is room for improvement, and 

recommendations are given in Section 9.2. 
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The recorded projectile velocities for each test are shown in Figure 38. 

 

Figure 38 recorded average velocities for the Point A direct impact. 

What is interesting to note from Figure 38 is that the NIJ I and IIA simulations 

predict the projectile velocity to decrease gradually during the impact, whereas the IIIA 

and III tests have the projectile velocity decreasing rapidly upon impact. As seen in 

Figure 38, the projectile velocity profiles of both the NIJ IIIA and III tests are virtually 

identical during the impact, and both tests predict that the aluminum is penetrated.    

7.7 Point A Analysis – 45 Degree Angle of Incidence 

With the direct impact analysis on Point A complete, the angle of incidence was 

adjusted to 45° and the analysis was redone. The oblique impact is important to consider 

because as the angle of incidence changes, the components of velocity change, and thus 

the mechanisms of energy absorption and projectile degradation are different as 

compared to a direct impact. Figure 39 shows the layout of the bodies analyzed for the 

oblique impact at Point A, or the center biplate.  All analysis settings and impact 

velocities are kept constant from the previous direct Point A analysis. 
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Figure 39 Body layout used for the Point A oblique impact analysis. 

The techniques used to generate the element mesh in this analysis were the same 

as used in Section 7.5, and the mesh is shown in Figure 40. 

 

Figure 40 Element mesh used for the oblique center impact. 

Table 36 shows some of the statistics of the element mesh used in the oblique 

center biplate analysis. 
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Table 36 Statistics of the oblique center impact mesh. 

Nodes 48393 

Elements 40235 

Average aspect ratio 7.162 

Average Jacobian ratio 1.000 

Relevance center Medium 

Relevance  0 

 

The aspect ratio is slightly higher than the previous analysis, mainly because of 

the changed relevance value. However, the Jacobian ratio is the same, and therefore the 

models are comparable.  

Figure 41 shows six of the frames captured from the NIJ IIA simulation video of 

the Point A oblique impact.  

 

Figure 41 Six frames of the analysis of the oblique Point A impact.  



www.manaraa.com

 94 

From Figure 41, notice the sliding of the projectile in the tangent direction. This 

behavior is expected for an oblique impact and is one of the reasons why considering an 

oblique impact is so important in the analysis. Normally, to reduce variables, only direct 

impacts are considered (Tabiei and Nilakantan 2008). As one can tell, this response is 

much different then the direct Point A analysis. If frictional interactions were considered 

in this work, a large amount of energy would theoretically be absorbed via that 

mechanism. The modes of failure of the textile, aluminum-oxide, and aluminum are the 

same as in the direct Point A analysis, as expected. 

The P-BFS results are tabulated for the oblique Point A impact in Table 37. 

Table 37 Simulation results for the Point A oblique impact. 

 I IIA  IIIA  III 

Maximum deflection, BFS (mm) 0.42 5.05 > 55 36.8 

Penetration detected (Yes, No) No No Yes No 

Aluminum perforated (Yes, No) No No Yes No 
 

Note that in Table 37 the BFS of the NIJ III test is less than 44 mm, yet the IIIA 

test predicts a BFS in excess of 55 mm. This data is nearly reverse that of what is shown 

in the NIJ IIIA and III simulations in Table 35 for the Point A direct impact analysis. This 

data goes on to show that at this impact point, the wearer is protected against a 

penetrating projectile (in the armor and the biplate) for all but the NIJ IIIA impact 

velocities. This failure at a lower NIJ level could be related to either the damage cone 

geometry created, or to the critical velocity value, which is mentioned in Section 9.2.  

The recorded average mass velocity of the projectile in the normal direction (to 

the biplate top face) is shown in Figure 42. 
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Figure 42 Average projectile mass velocity in the normal direction. 

As in the previous Point A analysis, the projectile velocity rapidly decreases upon 

impact for the NIJ IIIA and III simulations and more gradually for the I and IIA tests. 

Again, the average projectile velocity profile is nearly identical for both the NIJ IIIA and 

III tests.  

7.8 Point B Analysis – Zero Angle of Incidence  

One of the potential, and obvious, weak points of the proposed body armor 

system is at the spacing (gaps) between the biplates. This area of interest is the next to be 

analyzed. The analysis settings and clay/armor component geometry is held constant 

from the previous two impact tests. The geometry layout considered for this simulation is 

shown in Figure 43. 
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Figure 43 Geometry considered for direct Point B impact. 

The same element mesh techniques are used for the finite element analysis in this 

section as in the previous two impact tests. The element mesh is shown in Figure 44 and 

some of the mesh statistics are shown in Table 38. 

 

Figure 44 Element mesh used for the direct Point B analysis. 
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The overall element size used to mesh the biplates increased as compared to the 

Point A simulation. However the clay, projectile and Kevlar® layers were modeled with 

nearly identical element sizes.    

Table 38 Mesh statistics for direct Point B analysis. 

Nodes 45715 

Elements 49838 

Average aspect ratio 5.813 

Average Jacobian ratio 1.000 

Relevance Center Medium 

Relevance -13 
 

The average aspect ratio shows room for improvement, and the Jacobian ratio is 

held constant from the Point A tests, and therefore the models may be compared. 

In this case, two plates will theoretically be working together to absorb energy, 

destroy the projectile, and distribute dynamic loads. Figure 46 shows six cross-sectional 

views of captured video clips from the NIJ IIA analysis.  
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Figure 45 Six frames of the analysis of the direct Point B impact. 

Notice in Figure 45 that the projectile impacts the exposed ceramic skewed face 

(right plate) and then reflects off this face to partially impact the left biplate. This effect 

contributes highly to the energy distribution in the system and in particle between the two 

impacted biplates. The projectile is deformed within the first few moments of impact, 

sending fragments outward from the impact point.  

The predictions of the P-BFS test for this impact point combination are shown 

Table 39. 

Table 39 Simulation results for the Point B direct impact. 

 I IIA  IIIA  III 

Maximum deflection, BFS (mm) 0.89 10.85 47.6 > 55 

Penetration detected (Yes, No) No No No Yes 

Aluminum perforated (Yes, No) No  No  Yes Yes 
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One can see that both the NIJ IIIA and III tests predict that the BFS test would be 

a failure. However, the armor is able to protect against all threat levels except the NIJ III 

level, where at this level the armor system was indeed partially penetrated. In the case 

where the armor or aluminum was penetrated, only a small amount of the projectile was 

able to proceed beyond the component, as the remainder of the projectile was destroyed. 

The recorded projectile average mass velocity for all four simulations is shown in 

Figure 46. 

 

Figure 46 Recorded mass velocity during the direct Point B impact.  

As in both of the Point A tests, the same trend with the NIJ IIIA and III velocity 

profile hold true, however the NIJ I velocity profile is less gradual then either of the two 

Point A tests. Also, the NIJ III profile has a large spike around 20 µs as this is caused by 

the projectile being nearly totally destroyed and particles are travelling away from and 

through the armor system itself.   

The results in this section preliminarily show that this impact combination is in 

fact an armor weak-spot that must be addressed. 
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7.9 Point B Analysis – 45 Degree Angle of Incidence  

With the results tabulated for the direct impact at Point B, the angle of incidence 

was set at 45°. As mentioned, Point B is a preliminarily established weak spot, and a 

separate analysis must be considered for a projectile travelling directly into the gap 

between the two biplates, or in-other-words at the angle of skew. The geometry 

considered for the FEA in this section is shown in Figure 47. All analysis settings and 

geometric dimensioning is held the same as the last simulation. Other analysis settings 

are provided in Table 53. 

 

Figure 47 Body layout used for the Point B oblique impact analysis. 

The mesh of the model is shown in Figure 48, and some mesh statistics are given 

in Table 40. As shown, the geometry and mesh is similar to the previous Point B direct 

analysis completed previously.  
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Figure 48 Element mesh used for the oblique Point B analysis. 

Table 40 Mesh statistics for Point B oblique impact. 

Nodes 50563 

Elements 41110 

Average aspect ratio 6.933 

Average Jacobian ration 1.000 

Relevance Center Medium 

Relevance -7 
 

In Figure 49, one can see six frames captured from the video clip of the equivalent 

stress analysis for this combination. 
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Figure 49 Six frames of the analysis of the oblique Point B impact. 

Notice that the projectile is cut, or literally split between the two biplates 

impacted. This is caused by the hardness and sharp edges of the ceramic and aluminum 

plates acting in a knife like fashion to cut the projectile. This outcome was predicted by 

the design and spacing of the plates, where the spacing is uniformly set at 3 mm, or 

roughly half the nominal diameter of the 5.56 NATO projectile. This splitting proved to 

be an effective means of distributing the dynamic loads between the two biplates, in fact 

more effective than anticipated. 

The predictions for the NIJ P-BFS test for the Point B oblique impact are shown 

in Table 41. 
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Table 41 Simulation results for the Point B oblique impact. 

 I IIA  IIIA  III 

Maximum deflection, BFS (mm) 0.14 1.03 7.30 3.49 

Penetration detected (Yes, No) No No No No 

Aluminum penetrated (Yes, No) No No No No 

 

The results of the P-BFS test show that Point B under an oblique impact is not in 

fact a weak spot. Interestingly, the NIJ IIIA test results in a higher BFS than the NIJ III 

test, much like the Point A oblique impact. Again, this could be related to either the 

critical velocity of the conoid angle (aluminum-oxide aluminum contact area).    

The average mass normal velocity is shown in Figure 50. 

 

Figure 50 Average mass normal velocity recorded during Point B oblique impact.  

As expected from viewing of all the previous results, the velocity profile 

decreases rapidly for the NIJ IIIA and III simulations, and not nearly as rapidly for the I 

and IIA tests.  

Upon viewing the results, this impact combination is not a weak spot, as 

originally anticipated. In fact, this combination showed an ideal energy transfer 

relationship.  
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7.10 Point C Analysis – Zero Angle of Incidence  

Another obvious potential weak spot is the gap where four biplates come together, 

that is Point C from Figure 32. This is considered a weak spot because at this location 

only the edges and corners of the biplates may absorb energy and destroy the projectile 

tip. For this simulation a direct impact on the center of gap is considered (Figure 51). 

This is mainly because of the results provided in Section 7.7, showing that a 45° impact 

on a weak spot does not necessarily imply a failed test, and partly because at this location 

there are two possible oblique angles to consider.  

The geometry considered for this analysis is shown in Figure 51, and the element 

mesh is shown in Figure 52, while some mesh statistics are shown in  Table 42. 

 

Figure 51 Body layout used for the Point C direct impact analysis. 

Notice that the projectile is located directly above the Point C impact location and 

that there are four biplates that may potentially absorb energy and participate in the 

analysis.  
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Figure 52 Finite element mesh used for Point C direct impact analysis. 

As shown in Figure 52, the overall element size had to be increased as compared 

to the Point A and Point B simulations because of the number to contributing biplates 

increased to four.  

Table 42 Mesh statistics used for Point C direct impact analysis. 

Nodes 41752 

Elements 29047 

Average aspect ratio 8.011 

Average Jacobian ratio 1.001 

Relevance Center Coarse 

Relevance 95 
 

The increase in element size caused the aspect ratio to increase to just over 8, 

however the Jacobian ratio is still about 1, and therefore this model may be compared to 

the others. 

Figure 53 shows six clips captured from the resulting analysis video of the NIJ 

IIA simulation (9×19 mm NATO simulated projectile) at Point C. 
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Figure 53 Six video clips from analysis of Point C direct impact. 

As shown in Figure 54, the projectile is literally split, almost symmetrically, 

between all four biplates being impacted. This division of dynamic forces does very well 

to protect the wearer of the proposed hybrid armor system.  

 

Figure 54 Final clip of the Point C impact - Orthographic view shown. 
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Table 43 shows the tabulated results of the predicted outcome in the NIJ P-BFS 

test for the various impact velocities at this location. 

Table 43 Predicted outcome of P-BFS test at Point C. 

 I IIA  IIIA  III 

Maximum deflection, BFS (mm) 0.25 0.57 1.14 1.25 

Penetration detected (Yes, No) No No No No 

Aluminum perforation (Yes, No) No No No No 

 

Much like the Point B oblique results, the results here indicate that this location is 

not a weak spot, as first expected. Point C did very well in terms of minimizing BFS and 

stopping the projectile in all cases, regardless of impact velocity. This is largely due to 

the excellent distribution of dynamic forces and energy to each of the four impacted 

biplates.  

The average body velocity of the projectile is recorded for all four simulations 

and may be seen in Figure 55. 

 

Figure 55 Average mass velocity of each simulation during the Point C impact time. 

Although compared to the other locations, this point differed in response in the P-

BFS test, but not much in the velocity profile response. As shown in Figure 55, the 
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velocity profile of both the NIJ IIIA and III tests decreases rapidly whereas the NIJ I and 

IIA velocities for the most part decrease steadily. This is very similar to all other tests 

conducted.   

7.11 Point D Analysis – Zero Angle of Incidence  

As mentioned in Section 6.4 Geometry Selection of the Biplate, a third potential 

weak spot is that of an impact to the danger zone. This area, found by the calculated 

dwell duration and skew angle, is characterized by the area in the outer edge of the 

biplate, or Point D of Figure 32. For this analysis, the impact velocities, end time and 

other settings were held constant from the previous simulations.  

Figure 56 shows the geometry considered for the analysis.  

 

Figure 56 Point D analysis geometry considered. 
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The same techniques, such as body sweep, were used to generate the element 

mesh shown in Figure 57. The mesh densities for the biplates and other armor 

components are similar to what was used for the Point C analysis. 

 

Figure 57 Element mesh used for the oblique center impact. 

Some of the mesh statistics for the Point D analysis are shown in Table 44. 

Table 44 Mesh Statistics for the Point D FEA. 

Nodes 44915 

Elements 30567 

Average aspect ratio 6.867 

Average Jacobian ratio 1.002 

Relevance center Coarse 

Relevance  60 

 

Because of the increased element size the aspect ratio is about 6.8, which does 

show room for improvement, but the Jacobian ratio is just over 1, which is still close 

enough to be able to accurately compare this model to the others. 
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Figure 58 shows six of the captured frames from the simulation video of the NIJ 

IIA danger zone Point D impact.  

 

Figure 58 Six frames of the analysis of the Point D danger zone impact.  

The results in the simulation video show a similar outcome to that of the Point C 

analysis. The majority of the impact energy is absorbed by the center plate. However, 

once the center plate is impacted, fragments begin to impact the adjacent plates, helping 

to distribute the dynamic loads and energy. One can also see that the projectile is 

destroyed within the first few moments of impact, helping to distribute the loads to the 

adjacent plates. 

The predicted P-BFS results for the danger zone, Point D impact are shown in 

Table 45. 
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Table 45 Simulation results for Point D impact. 

 I IIA  IIIA  III 

Maximum deflection, BFS (mm) 0.24 0.51 2.51 4.67 

Penetration detected (Yes, No) No No No No 

Aluminum perforated (Yes, No) No No No No 
 

The results shown for the P-BFS test indicate that this impact point is not a weak 

spot. This impact combination effectively distributed the dynamic loads and energy much 

more efficiently than anticipated.   

The recorded projectile average mass velocity is shown in Figure 59. 

 

Figure 59 Average projectile mass velocity in the normal direction. 

As with the all of the previous velocity profile results, the same trend holds true. 

The profile of the NIJ IIIA and III is that of a rapid decreasing response, and the NIJ I 

and IIA is that of a gradual decreasing response.   

7.12 Summary of FEA Results 

A summary of the FEA results showing the BFS predicted values for impact 

Points A, B, C, and D is shown in Table 46 and the penetration results are shown in Table 

47. 



www.manaraa.com

 112 

Table 46 Summary of BFS for the various tests. 

 Max BFS (mm) 

NIJ I NIJ IIA NIJ IIIA NIJ III 

Point A Direct 0.67 10.94 35.50 > 55 

Point A Oblique 0.42 5.05 > 55 36.80 

Point B Direct 0.89 10.85 47.60 > 55 

Point B Oblique 0.14 1.03 7.30 3.49 

Point C Direct 0.25 0.57 1.14 1.25 

Point D Direct 0.24 0.51 2.51 4.67 
 

Table 47 Summary of the penetration detection for the various tests. 

 Penetration Detection (overall | aluminum) 

NIJ I NIJ IIA NIJ IIIA NIJ III 

Point A Direct N N N N N Y N Y 

Point A Oblique N N N N Y Y N Y 

Point B Direct N N N N N Y Y Y 

Point B Oblique N N N N N N N N 

Point C Direct N N N N N N N N 

Point D Direct N N N N N N N N 

 

The preliminary analysis results of the proposed hybrid semi-flexible armor 

system show that it is capable of protecting the wearer against NIJ level I and IIA 

projectiles in all hit locations, and the many of the NIJ IIIA and NIJ III impact 

combinations. Furthermore, only two impacts resulted in a complete perforation of the 

armor system, and only six of the twenty four simulations resulted in a perforation of the 

ballistic biplate. This indicates a good multiple hit capacity. 

The velocity profiles for each impact scenario proved to be very similar for each 

NIJ level, regardless of hit location or angle of incidence. This outcome at first seemed 

strange, however later proved not to be a coincidence. The critical velocity of the armor 

is determined to be the reason why the higher velocity impacts resulted in a very rapid 

decline, whereas the lower velocity impacts resulted in a more gradual decline in 

projectile velocity (David, Gao and Zheng 2009). The critical velocity is an armor 
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parameter that is dependent upon many factors such as, the number and thicknesses of 

layers, layer materials, angle of incidence, etc. This velocity value is determined by 

experimental testing, and is at which point there is a distinct difference in failure/fracture 

mode of the ballistic plate between a sub-critical and super-critical impacts. For a typical 

ballistic plate, a sub-critical impact would result in a plate failure by stacking faults and 

microtwins produced by plastic deformations during the impact (David, Gao and Zheng 

2009). On the other hand, a super-critical impact would typical result in a ballistic plate 

failure by a mode of solid-state transformation, as observed on a nanoscale, from 

crystalline to amorphous caused by the high impact strain rate (David, Gao and Zheng 

2009). The critical velocity of the proposed armor system is something that is 

recommended to be investigated further in future studies.         

7.13 Energy Distribution during Impact 

For a body armor system, one of the key design parameters is the energy 

absorption capability of each component as used in the system. The amount of energy 

that a component can absorb may change, if tested individually and separately from the 

armor system as a whole. The amount of energy absorbed by each piece, including the 

wearer (in this work, the clay) was recorded in ANSYS 12.1 (SAS IP, Inc. 2009) during 

the finite element analysis and imported into MATLAB® (TheMathWorks, Inc. 2008) as 

a text file. The energy absorption data was then analyzed to determine the percentage of 

total energy absorbed by each component. This technique provides another outlook to the 

performance of the armor system, beyond simply the perforation and backface signature 

test results.  
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Table 48 shows the percent of the total system energy absorbed for the various 

armor components. Several components are not included in this table but are included in 

the total energy summation, such as the total projectile energy, and the top biplate layer 

(Kevlar®) energy.  

Table 48 Percent system energy absorption summary per component. 

 Percent Energy Absorption (%) 

Point A Direct Ceramic Aluminum Kevlar  Clay 

    NIJ I 0.754 84.83 3.53 0.169 

    NIJ IIA 0.708 12.77 83.72 1.255 

    NIJ IIIA 0.814 5.786 76.05 16.83 

    NIJ III 21.74 5.674 29.15 42.35 

Point A Oblique Ceramic Aluminum Kevlar  Clay 

    NIJ I 0.656 82.75 4.169 0.248 

    NIJ IIA 1.128 36.02 56.13 1.413 

    NIJ IIIA 7.699 3.450 63.92 24.45 

    NIJ III 10.93 23.03 46.02 17.77 

Point B Direct Ceramic Aluminum Kevlar  Clay 

    NIJ I 0.2412 14.62 83.70 0.0204 

    NIJ IIA 0.3675 10.06 88.10 0.542 

    NIJ IIIA 1.122 0.109 98.66 0.064 

    NIJ III 1.539 11.40 4.963 81.62 

Point B Oblique Ceramic Aluminum Kevlar  Clay 

    NIJ I 0.603 85.69 0.474 0.074 

    NIJ IIA 1.193 80.67 6.172 0.333 

    NIJ IIIA 1.023 11.45 84.73 1.159 

    NIJ III 0.591 47.95 43.95 1.042 

Point C Direct Ceramic Aluminum Kevlar  Clay 

    NIJ I 0.724 83.36 0.129 0.019 

    NIJ IIA 0.502 85.35 0.237 0.097 

    NIJ IIIA 0.466 86.81 0.882 0.278 

    NIJ III 0.595 86.82 1.135 0.673 

Point D Direct Ceramic Aluminum Kevlar  Clay 

    NIJ I 1.860 95.02 0.081 0.010 

    NIJ IIA 0.084 95.36 0.153 0.056 

    NIJ IIIA 0.303 52.36 45.11 0.555 

    NIJ III 0.238 39.93 58.09 0.592 

 

 Table 48 shows that in most cases, for the two lower impact velocities the 

majority of the energy was absorbed through the aluminum portion of the armor.  In 
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contrast, for the higher two impact velocities, the majority of the energy absorbed is via 

the Kelvar® layers and the clay. This shift in energy absorption is possibly related to the 

previously mentioned armor critical velocity. This is thought to be the culprit because at 

these higher impact velocities, the aluminum is penetrated leaving the Kevlar® to absorb 

the remaining energy.  

 One should also take note that in two of the potential armor weak spots (Points C 

and D), the percentage of energy absorbed by the clay was actually lower than that of a 

direct center plate impact (Point A). Upon evaluation, it is determined that this is mainly 

because the projectile impact energy and dynamic loads are distributed to more than one 

plate, and in turn this increases the contact area for all subsequent layers, thus reducing 

stress and inward clay deflection.  

It was always observed that in the simulations where the Kevlar® layers absorbed 

the majority or near-majority of the energy, the layers were typically torn apart and 

reduced to a non-structural armor component. This is an important thing to consider 

because the multiple-hit capability of the armor is heavily dependent upon the Kevlar® 

(and all other components) layers remaining at least somewhat intact.  

7.14 Equivalent Thickness of Kevlar in Lieu of Plates 

There are many ―what if‖ questions that can be asked about the design of an 

armor system. One of these questions is: What if the biplates are replaced with an 

equivalent thickness of plain-woven Kevlar® layers? This type of armor design would 

contain thirty-three layers of 0.5 mm thick Kevlar® sheets, and is shown in Figure 60. 
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Figure 60 Geometry showing the replacement of biplates with layers of Kevlar. 

 The question of replacing the biplates with Kevlar® layers can be answered using 

the same techniques in Sections 7.5 through 7.11. And in a similar fashion to those 

sections, finite element analysis is used to determine the effect of using thirty-three layers 

of plain-woven Kevlar® 29 fibers in lieu of biplates.  

 The same four impact velocities, projectile geometry and clay properties are used 

for the analysis in this section as in the previous sections. The element mesh is shown in 

Figure 61, and the element statistics are shown in Table 49. 
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Figure 61 Mesh used to conduct the FEA on the replacement geometry. 

Figure 61 shows that the same meshing techniques were used to model the 

replacement geometry as in the other sections. In this case, the aspect ratio is rather large 

and could use some improvement.  

Table 49 Mesh statistics for the analysis of the replacement geometry. 

Nodes 48782 

Elements 29240 

Average aspect ratio 13.896 

Average Jacodian Ratio 1 

Relevance  74 

Relevance center Coarse 

  

Figure 62 shows six clips from the NIJ IIA resulting simulation. 
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Figure 62 Six video clips of the simulated projectile into replacement layers. 

 The theoretical results of the P-BFS test given in Table 50 and shown in Figure 63 

depict the mass velocity of each simulated projectile during the impact time. 

Table 50 Predicted results of the P-BFS test for the replacement geometry configuration. 

 I IIA  IIIA  III 

Maximum deflection, BFS (mm) 1.87 12.29 9.88 10.70 

Penetration detected (Yes, No) No No Yes Yes 
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Figure 63 Average mass velocity of each projectile in the replacement configuration. 

 As shown in Figure 63, the average velocity profiles for the projectile are very 

similar to those of the biplate finite element analysis testing results. The projectile in the 

NIJ IIIA and III tests rapidly decreases, whereas the NIJ I and IIA velocities decreases 

more gradually.   

Upon first review, the results in Table 50 may seem to justify the use of a thirty-

three layer armor system in place of the hybrid ballistic plate and textile armor system 

presented; as all of the four simulations have a BFS less than 44 mm. However, with one 

impact from an NIJ IIA, IIIA, or III projectile, all of the armor layers are completely 

destroyed, as shown in the last clip. This leads to a predicted failure of the NIJ P-BFS test 

with any NIJ IIA, IIIA, or III impact. Additionally, things such as multiple-hit capacity, 

flexibility, durability, and feasibility must all be considered. As shown, the alternative 

thirty-three layer armor system does not likely posses a multiple-hit capacity. Meaning, 

after being struck one time, the armor cannot be depended upon to protect the wearer 

against any follow through projectile strike. This alone is enough to deem it a failure in 
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the P-BFS test. Additionally, the durability and feasibility is questionable, simply because 

of environmental conditions, such as ultra-violet light, humidity, and extreme 

temperature (low or high) that may break down Kevlar®. With the presented hybrid 

armor system, the woven Kevlar® layers are contained in a plastic container and stored in 

the lower compartment of the armor carrier, which make them easily removable and 

replaceable. 

 Another thing to consider regarding the thirty-three layer Kevlar® replacement 

system is how the armor system would theoretically counter sharp pointed objects and/or 

shrapnel fragments. Normally, to protect against sharp pointed objects (such as a knife or 

bayonet) and shrapnel, hard materials are used (Croitoro and Boros 2007). Woven 

Kevlar® layers would likely be penetrated if stabbed or hit by an oddly-shaped pointed 

piece of shrapnel.     

7.15 Discussion of Results 

The purpose of the preliminary finite element analysis shown in this chapter is to 

determine if the presented armor system is feasible. Based upon the results of the finite 

element analysis, the purposed semi-flexible hybrid armor system shown shows great 

potential in being further developed into a full scale NIJ level III armor system. 

Furthermore, as shown in the current configuration, the analysis results indicate that the 

armor can safely protect the wearer against all NIJ IIA impacts, most NIJ IIIA impacts 

and some NIJ III impacts. This would theoretically place the armor system as a NIJ II to 

IIIA level armor, the same rating or better as the PASGT armor system used by the U.S. 

Armed Forces from the 1980s up until the turn of the 21
st
 century.     
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 The results also indicate that simply replacing the ballistic plates with Kevlar® 

layers will result in a failed P-BFS test on account that the multiple-hit requirement will 

more than likely not be met, among other possible failures.  
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CHAPTER 8  DESIGN OF EXPERIMENTS 

A formal design of experiments (DOE) study is used to help analyze the data 

obtained from the finite element analysis. Particularly, the results from the DOE study 

will help to determine which factors contribute to the energy absorbed by the various 

components of the armor system and most importantly, by the wearer (in this case, the 

clay). 

8.1 Design of Experiments – Setup 

The DOE study conducted for this work examined how the various impact 

velocities and hit locations affected the ability for the aluminum, Kevlar®, and clay 

components to absorb energy. Three separate studies were conducted to preliminarily 

determine how 

1) velocity,  

2) impact location, and  

3) the combined effect of velocity with impact location,  

contributed to the energy absorbed by the  

1) aluminum,  

2) Kevlar layers®, and  

3) clay (wearer).  

Table 51 shows the factors and the values for used for the DOE analysis.  
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Table 51 Values of different levels of the DOE factors. 

Factor Symbol Level 1 Level 2 Level 3 Level 4 

Velocity V 282.8 527.49 860.81 940 

Location L A B C D 

 

The velocity levels are based on NIJ levels and are given in Table 32. The location 

points, A, B, C, and D correspond to the impact locations used for the finite element 

analysis as shown in Figure 32. 

The software used to complete the DOE was Microsoft Excel (Microsoft, Inc. 

2009) used in conjunction with Minitab 15 (Minitab Inc. 2007). The overall goal of this 

design of experiments study is to provide insight into the energy absorption mechanisms, 

and as a tool to further develop the hybrid armor system. 

8.2 Design of Experiments – Outcome 

Upon completing the DOE study, Figure 64, Figure 65 and Figure 66 were 

generated. One can see the effect of velocity, location and the combined effect of location 

and velocity on the ability for the aluminum layer to absorb energy in Figure 64. 
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Figure 64 Percent contribution to energy absorption by aluminum. 

As shown, the largest contribution, at 69%, to the ability of the aluminum to 

absorb energy is the location of the impact. Furthermore, it is shown that impact velocity 

alone and the combined effect of velocity and impact location do not contribute nearly as 

much as location alone. This means that the plate spacing, top area, and critical width 

have more of an effect on the energy absorption ability of the aluminum than the impact 

velocity of the projectile. This trait follows the analysis as well. If impacted in the Danger 

Zone, the biplate does not have a maximum aluminum-oxide aluminum contact area, and 

thus the aluminum cannot absorb energy. Similarly, if impacted in any gap (such as Point 

B or C), the aluminum does not make full contact with any other component and thus 

cannot absorb energy. On the other hand, if impacted in a location such as Point A, the 

aluminum-oxide aluminum contact area is high and the aluminum may then absorb 

energy.     

Location
69%

Velocity

13%

Location 

and velocity

18%
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Figure 65 Percent contribution to energy absorption by Kevlar layers. 

In Figure 65 one can see the contributions to the ability of the Kevlar® layers (all 

16) to absorb energy. As shown, the hit location alone does not contribute as highly as the 

velocity alone does to the ability to absorb energy. This study shows that the spacing of 

the plates, the angle of skew, and the biplate layer thicknesses are acceptable. If one of 

these design parameters was faulty, the location of the impact would contribute a higher 

percentage than what is presented.  

 The most important component to analyze is the clay, as these results are directly 

related to the survivability of the wearer. Figure 66 shows how the absorption of energy 

to the clay is affected by the various impact parameters. 

Velocity
45%

Location
13%

Location 
and velocity

42%
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Figure 66 Percent contribution to energy absorption by clay. 

As shown, velocity alone contributes 36% to the energy absorption ability of the 

clay, whereas location and velocity combined contribute 47% to the ability of clay to 

absorb energy. These outcomes are as expected; as the kinetic energy of the projectile 

increases, the energy transfer to the clay will be larger. The impact location only 

contributes 17% to the energy absorption of the clay, which is the minimum effect. This 

is a good indicator of the ability of the armor system as a whole to distribute the dynamic 

loads, regardless of impact location. These results further verify that the biplate 

thickness(es), spacing, angle of skew and Kevlar® layer quantities are all acceptable for 

the system.  

Overall, the DOE results show that further from the impact point, the less effect 

location has on the ability to absorb energy, again reinforcing the capability for the armor 

system as a whole to distribute loads. Also, the results show that the further from the 

impact point, the more effect that velocity has on the ability of the respective component 

to absorb energy.  

Location

17%

Velocity

36%

Location 

and velocity

47%
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On the onset on this work, these two relationships were unknown, and with the 

now known relationships presented, the optimization and development of the armor may 

be more focused in future work.  
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CHAPTER 9  PROJECT DISCUSSION 

9.1 Limitations on the Analysis and on the Project 

The FEA shown is limited by a number of things. The primary limitation is the 

number of permitted nodes by the available license. Additionally, the computational 

resources currently available are a limiting factor. Both of these factors limit the overall 

analysis time and increase the analysis error and hourglass energy. Hourglass energy is a 

fictional energy source created by ANSYS to simulate the realistic dynamic response of 

stiff materials (SAS IP, Inc. 2007). This was one of the main problems in the analysis, 

and to reduce hourglass energy it is recommended that one increase the mesh density. 

However, this was impossible given the nodal limitations (SAS IP, Inc. 2007).    

With unlimited or near-unlimited restrictions on nodes and computational 

resources, the finite element analysis could be conducted on a larger scale (actual size), 

with the armor carrier, and without the non-impacted plates being modeled as rigid. 

Moreover, the mesh density could be increased to more accurately simulate the material 

failure and/or facture. With increased computational resources, the overall analysis time 

could be increased as well, thus to further investigate the energy transfer mechanisms and 

to ensure that the maximum BFS is reached.     
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9.2 Method of Improvements toward Final Design 

Some areas of improvement can be picked out for the final armor based on the 

summary of results shown in Table 46, Table 47, and Table 48. The areas of further 

improvement, research and development are: 

1) the implementation of a damping mechanism for high velocity strikes, 

2) determining the ballistic limit of the armor system, 

3) determining the velocity at which statistically half the impacting projectiles 

penetrate the armor, or the V50, 

4) study the mobility and dexterity characteristics of the entire armor system, 

5) complete the design and then implement and optimize the armor carrier vest, 

and 

6) determine if the armor has a positive buoyancy. 

Work in these six areas will insure that an effective alpha prototype is created and 

experimentally tested with minimal need for other expensive testing before final 

production.  

The first two areas of improvement are directly related to the rapid velocity decline 

of the high velocity impact. This high change of velocity over a short period time 

increases impulse to the clay, thus the maximum backface signature is increased as well. 

If the impact velocity could be held below the critical velocity and/or a damping 

mechanism was introduced, the impulse to the clay would be decreased and in turn 

decrease the BFS. This area of armor design is not widely researched, although some 

damping systems have been proposed to reduce blunt trauma to the wearer, with the 
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overall goal of reducing the likelihood of fractured bone structure and damaged organs 

(David, Gao and Zheng 2009).           

The next area of necessary research is Item (3), to determine the V50 of the armor. 

This is rating, much like the NIJ level, which is the second required National Institute of 

Justice test, after the P-BFS test. This test can be simulated, and often is, using finite 

element analysis to predict the V50 value for the hybrid armor setup. 

Items (4) and (5) are both related to the flexibility of the hybrid armor, and are to 

develop a quantitative mobility and dexterity study and to complete the design the armor 

carrier. These items must be completed after the armor system is optimized by 

determining the ballistic limit and the V50, as these two items may change the armor 

dimensions. It should be noted that a quantitative mobility and dexterity study is not a 

well-researched topic, although such a study is highly needed in this and many other 

fields.   

The last item is to determine if the armor possesses positive buoyancy. This is set 

as a current design subgoal and is an important consideration because in the event that the 

wearer falls into a body of water, the individual will potentially float or be assisted to the 

surface if the armor posses a positive buoyancy. Currently, the underlying Kevlar® layers 

in the lower compartment are contained inside a thin sealed plastic case. This is to keep 

the layers separate from environmental factors, including water. This setup is thought to 

increase the positive buoyancy of the armor, and is currently the only method designed 

into the hybrid armor to do such. 
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9.3 Analysis Results and Outcomes in Terms of Design Goals 

After completing the finite element analysis and preliminary design, it is safe to 

determine that the semi-flexible hybrid armor system will indeed offer the wearer an 

ideal balance of protection and flexibility. This balance, proven by existing technology, 

such as the flexible stab resistance armor array (Croitoro and Boros 2007), will help to 

accomplish the first objective - to increase the mobility and dexterity of the wearer. 

Additionally, the user will be able to easily adjust the desired protection level by adding 

or removing the ballistic biplates, made possible by the integrated elastic straps. 

The completed armor system will be contained in a two compartment armor vest, 

worn in a similar fashion to currently produced ballistic vests. However, the completed 

semi-flexible vest will extend the rifle protection area higher in the underarms in lower in 

the groin and torso sections. These extensions will help accomplish the second objective - 

to increase the NIJ IIIA/III protection area. As a result of the added protective area, 

soldiers and law enforcement officers will have higher levels of confidence and morale, 

and in the event they are struck by a bullet, their likelihood of survivability will be 

increased. 

Using Equation 2 and the material properties in Table 10, Table 11 and Table 14, 

the predicted areal density of the hybrid armor system is 43.87 kg/m
3
. This areal density 

shows a decrease of approximately 36% compared to similar protective hard armor 

systems shown in Table 9. The reduced areal density will yield weight reductions in the 

vest and insure that the third design objective – to reduce the armor areal density, is 

accomplished. 
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The overall thickness of the armor system is a mere 16.8 mm. This value does not 

include the armor carrier vest which is still in the design phases. To maintain the overall 

thickness subgoal of less than 20 mm, the armor vest may only contain 3.2 mm of 

thickness in material. This is definitely possible, and is a consideration for the final 

design of the armor carrier vest. 

9.4 Concluding Remarks 

This work set out to address the issue of the balance of mobility and protection 

inherent in personal body armor vests. The solution presented mixes proven technology 

with advanced computational techniques to increase the wearer’s mobility. The result is a 

well balanced hybrid armor system, capable of providing the wearer with rifle projectile 

protection. This is made possible by using a matrix of specially designed small ballistic 

plates placed on top of flexible woven Kelvar® layers. Additionally, the hybrid armor 

system presented shows a significant decrease in overall armor weight, thus adding to the 

user’s mobility. The analysis conducted shows that the armor system is capable of 

complying with the NIJ level II or NIJ level IIIA requirements, without any further 

modifications. Furthermore, this work recognizes areas of improvement that were found 

by using both finite element analysis and design of experiments to increase the potential 

armor rating to NIJ level III, the ultimate goal.       

  The semi-flexible hybrid armor system shows great potential in accomplishing 

all three design goals and both design subgoals set forth at the onset of this work. In fact, 

the analysis shows that two of the three design goals and potentially all of the design 

subgoals are met with the beta semi-flexible hybrid personal body armor shown.  
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Appendix A: List of Acronyms 

Listed in alphabetical order: 

AP – Armor Piercing 

BFS – Backface signature 

DOE – Design of Experiments   

FEA – Finite element analysis 

IBA – Interceptor Body Armor 

ISAPO – Interim Small Arms Protective Overvest 

LR – Long Rifle 

NATO – North American Treaty Organization 

NIJ – National Institute of Justice 

PASGT – Personnel Armor System for Group Troops 

P-BFS – Peroration-Backface Signature (test) 

SN – Stalynoi Nagrudnik (steel bib) 
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Appendix B: List of Nomenclature 

Listed in alphabetical order: 

CA  contact area between aluminum-oxide and aluminum  

pA  areal density 

a speed of sound 

 iC stiffness matrix 

SD distance covered during conoid formation 

ed  eroded projectile tip diameter

 

pd  nominal diameter of the projectile  

E  Young’s modulus 

kE  kinetic energy of a projectile 

PE residual energy of the projectile 

gF  gap caused by the fill 

 f = fill (subscript) 

fy = fill yarn (subscript) 

fh  diameter of the fill  

th  height of projectile tip (nominal)   

wh  diameter of the warp 

im = interyarn matrix (subscript) 

K  bulk modulus 

fL
 
fill spacing 
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Appendix B: (Continued) 

wL
 
warp spacing 

m  mass of a projectile  

m  matrix (subscript) 

 iS compliance matrix 

utS  ultimate tensile strength of the material 

yS  yield strength of the material 
 

DT time of dwell  

iT  respective parameter being normalized 

*

iT  normalized parameter 

TT  total thickness of the textile 

tc = thickness of the aluminum-oxide on the biplate 

it  individual layer thickness 

tk = thickness of the top Kevlar® layer(s) on the biplate 

tm = thickness of the aluminum on the biplate 

tp = overall thickness of the biplate 

iU invariants of the stiffness matrix 

RU modulus of resilience 

TU modulus of toughness 

V general notation for velocity of a projectile 

fV  fiber volume fraction  
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Appendix B: (Continued) 

iV  volume occupied by various textile components 

inV  initial projectile velocity 

reV  residual projectile velocity  

cW  critical width of the biplate 

 

gW  gap caused by the warp 

Wp= overall width of the biplate 

w = warp (subscript) 

wy = warp yarn (subscript) 

f  strain at failure of the material  

i general notation for the stress partitioning factor  

  angle of skew on the biplate 

v Poisson’s ratio 

  material density  

i  
individual mass density 



 

conoid angle
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Appendix C: Analysis Settings for Biplate Finite Element Analysis 

The analysis and solver settings used for the finite element analysis of the biplate 

layer thicknesses in Section 6.1 - Biplate Finite Element Analysis – Setup are shown in 

Table 52. 

Table 52 Analysis Settings used for the analysis of the biplate.  

Solution end time (second) 50µ 

Energy error 0.3 

Automatic mass scaling Off 

Hexagonal integration type Exact 

Geometric strain limit 1.5 

AUTODYN standard damping On 

Failure modes:  

     On material failure Yes 

     On geometric strain limit Yes 

     On minimum element time step No 

Elements retain inertia on failure Yes 
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Appendix D: Settings Used for Armor System Finite Element Analysis 

The analysis settings and preferences used to for the main system finite element 

analysis (Chapter 7) are shown in Table 53. 

Table 53 Settings used for the armor system analysis.  

Solution end time (second) 75µ 

Energy error 0.47 

Automatic mass scaling Off 

Hexagonal integration type Exact 

Geometric strain limit 1.5 

AUTODYN standard damping On 

Failure modes:  

     On material failure Yes 

     On geometric strain limit Yes 

     On minimum element time step No 

Elements retain inertia on failure Yes 
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Appendix E: Alternative Plate Geometries and Layouts 

Several different plate geometrics were considered for the final hybrid armor 

design. The biplate geometry presented in this work was one of three possible plate 

arrangments considered. In some ways the biplate shown in this work was the second 

best choice of the three plates - from a mobility and protection point of view. All three 

biplate geometries, including the particular plate arrangement tested are shown in Figure 

67. 

   

Figure 67 Three plate geometries and layouts considered. 

Arrangement A was the plate used for the analysis in this work. Plate arrangement 

B was inspired by the key stone found in a common stone archway. The concept is that 

around the harsh transition points on the torso (shown in Figure 30), the ―key‖ plate 

(center symmetric plate) will be used to minimize the exposed gap.  

Plate arrangement C is the simplest design, using squares or rectangles. A very 

similar arrangement to this was developed as a stab resistant armor in Canada, and 

proven to be flexible (Croitoro and Boros 2007).  
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